A067047 a(n) = lcm(n, n+1, n+2, n+3)/12.
1, 5, 5, 35, 70, 42, 210, 330, 165, 715, 1001, 455, 1820, 2380, 1020, 3876, 4845, 1995, 7315, 8855, 3542, 12650, 14950, 5850, 20475, 23751, 9135, 31465, 35960, 13640, 46376, 52360, 19635, 66045, 73815, 27417, 91390, 101270, 37310, 123410, 135751, 49665, 163185
Offset: 1
Examples
a(6) = 42 as lcm(6,7,8,9)/12 = 72*7/12 = 42.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- Amarnath Murthy, Some Notions on Least Common Multiples, Smarandache Notions Journal, Vol. 12, No. 1-2-3 (Spring 2001), pp. 307-308.
- Index entries for linear recurrences with constant coefficients, signature (0,0,5,0,0,-10,0,0,10,0,0,-5,0,0,1).
- Index entries for sequences related to lcm's.
Crossrefs
Cf. A067046.
Programs
-
Mathematica
Table[LCM@@Range[n,n+3]/12,{n,40}] (* or *) LinearRecurrence[{0,0,5,0,0,-10,0,0,10,0,0,-5,0,0,1},{1,5,5,35,70,42,210,330,165,715,1001,455,1820,2380,1020},40] (* Harvey P. Dale, Dec 04 2016 *)
-
PARI
a(n) = {lcm([n,n+1,n+2,n+3])/12} \\ Harry J. Smith, May 01 2010
-
PARI
a(n)=binomial(n+3,4)/if(n%3,1,3) \\ Charles R Greathouse IV, Feb 28 2012
Formula
Quasipolynomial: a(n) = n(n+1)(n+2)(n+3)/72 if 3|n and a(n) = n(n+1)(n+2)(n+3)/24 otherwise.
a(n) = n*(n+1)*(n+2)*(n+3)/(8*(5+4*cos(2*n*Pi/3))). - Gary Detlefs, Apr 01 2011
G.f.: -x*(x^10 + 5*x^9 + 5*x^8 + 30*x^7 + 45*x^6 + 17*x^5 + 45*x^4 + 30*x^3 + 5*x^2 + 5*x+1)/ ((x-1)^5*(x^2+x+1)^5). - Colin Barker, Jul 01 2012
From Amiram Eldar, Sep 29 2022: (Start)
Sum_{n>=1} 1/a(n) = 16 - 8*Pi/sqrt(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 160*log(2)/3 - 36. (End)