cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067047 a(n) = lcm(n, n+1, n+2, n+3)/12.

Original entry on oeis.org

1, 5, 5, 35, 70, 42, 210, 330, 165, 715, 1001, 455, 1820, 2380, 1020, 3876, 4845, 1995, 7315, 8855, 3542, 12650, 14950, 5850, 20475, 23751, 9135, 31465, 35960, 13640, 46376, 52360, 19635, 66045, 73815, 27417, 91390, 101270, 37310, 123410, 135751, 49665, 163185
Offset: 1

Views

Author

Amarnath Murthy, Dec 30 2001

Keywords

Examples

			a(6) = 42 as lcm(6,7,8,9)/12 = 72*7/12 = 42.
		

Crossrefs

Cf. A067046.

Programs

  • Mathematica
    Table[LCM@@Range[n,n+3]/12,{n,40}] (* or *) LinearRecurrence[{0,0,5,0,0,-10,0,0,10,0,0,-5,0,0,1},{1,5,5,35,70,42,210,330,165,715,1001,455,1820,2380,1020},40] (* Harvey P. Dale, Dec 04 2016 *)
  • PARI
    a(n) = {lcm([n,n+1,n+2,n+3])/12} \\ Harry J. Smith, May 01 2010
    
  • PARI
    a(n)=binomial(n+3,4)/if(n%3,1,3) \\ Charles R Greathouse IV, Feb 28 2012

Formula

Quasipolynomial: a(n) = n(n+1)(n+2)(n+3)/72 if 3|n and a(n) = n(n+1)(n+2)(n+3)/24 otherwise.
a(n) = n*(n+1)*(n+2)*(n+3)/(8*(5+4*cos(2*n*Pi/3))). - Gary Detlefs, Apr 01 2011
G.f.: -x*(x^10 + 5*x^9 + 5*x^8 + 30*x^7 + 45*x^6 + 17*x^5 + 45*x^4 + 30*x^3 + 5*x^2 + 5*x+1)/ ((x-1)^5*(x^2+x+1)^5). - Colin Barker, Jul 01 2012
From Amiram Eldar, Sep 29 2022: (Start)
Sum_{n>=1} 1/a(n) = 16 - 8*Pi/sqrt(3).
Sum_{n>=1} (-1)^(n+1)/a(n) = 160*log(2)/3 - 36. (End)