cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A067049 Triangle T(n,r) = lcm(n,n-1,n-2,...,n-r+1)/lcm(1,2,3,...,r-1,r), 0 <= r < n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 2, 1, 1, 5, 10, 10, 5, 1, 1, 6, 15, 10, 5, 1, 1, 1, 7, 21, 35, 35, 7, 7, 1, 1, 8, 28, 28, 70, 14, 14, 2, 1, 1, 9, 36, 84, 42, 42, 42, 6, 3, 1, 1, 10, 45, 60, 210, 42, 42, 6, 3, 1, 1, 1, 11, 55, 165, 330, 462, 462, 66, 33, 11, 11, 1, 1, 12, 66, 110
Offset: 0

Views

Author

Amarnath Murthy, Dec 30 2001

Keywords

Examples

			Triangle begins:
  1;
  1, 1;
  1, 2, 1;
  1, 3, 3, 1;
  1, 4, 6, 2, 1; ...
		

References

  • Amarnath Murthy, Some Notions on Least Common Multiples, Smarandache Notions Journal, Vol. 12, No. 1-2-3, Spring 2001.

Crossrefs

Diagonals give A067046, A067047, A067048. Row sums give A061297.

Programs

Extensions

More terms from Vladeta Jovovic, Dec 31 2001

A067048 a(n) = lcm(n, n+1, n+2, n+3, n+4) / 60.

Original entry on oeis.org

1, 1, 7, 14, 42, 42, 462, 66, 429, 1001, 1001, 364, 6188, 1428, 3876, 3876, 6783, 4389, 33649, 3542, 17710, 32890, 26910, 8190, 118755, 23751, 56637, 50344, 79112, 46376, 324632, 31416, 145299, 250971, 191919, 54834, 749398, 141778, 320866, 271502, 407253
Offset: 1

Views

Author

Amarnath Murthy, Dec 30 2001

Keywords

Examples

			a(6) = 42 as lcm(6,7,8,9,10)/60 = 2520/60 = 42.
		

Crossrefs

Programs

  • Maple
    seq(ilcm(n,n+1,n+2,n+3,n+4)/60,n=1..100); # Robert Israel, Feb 07 2016
  • Mathematica
    Table[LCM @@ Range[n, n + 4]/60, {n, 1, 50}] (* Amiram Eldar, Sep 29 2022 *)
  • PARI
    a(n)={lcm([n, n+1, n+2, n+3, n+4])/60} \\ Harry J. Smith, May 01 2010

Formula

From Gary Detlefs Apr 14 2011 and Apr 18 2011: (Start)
a(n) = (n+4)!*gcd(n-1,3)/(360*(n-1)!*gcd(n,4))
a(n) = (n+4)!*(5-4*cos((2*n+1)*Pi/3))/(1080*(n-1)!*(2+(-1)^n+cos(n*Pi/2)))
a(n) = (n+4)!*gcd(n-1,6)/(180*(n-1)!*2^((2*cos(n*Pi/2)+9+(-1)^n)/4)), n>1. (End)
120 <= n*(n+1)*(n+2)*(n+3)*(n+4)/a(n) <= 1440. - Charles R Greathouse IV, Sep 19 2012
Sum_{n>=1} 1/a(n) = 80 - 40*log(sqrt(3)+2)/sqrt(3) - 490*log(2)/3 + 60*log(3). - Amiram Eldar, Sep 29 2022

A189046 a(n) = lcm(n,n+1,n+2,n+3,n+4,n+5)/60.

Original entry on oeis.org

0, 1, 7, 14, 42, 42, 462, 462, 858, 3003, 1001, 4004, 6188, 18564, 27132, 3876, 27132, 74613, 100947, 67298, 17710, 230230, 296010, 188370, 237510, 118755, 736281, 453096, 553784, 1344904, 324632
Offset: 0

Views

Author

Gary Detlefs, Apr 15 2011

Keywords

Comments

a(n) mod 2 has a period of 8, repeating [0,1,1,0,0,0,0,0].

Crossrefs

Cf. A000217 ( = lcm(n,n+1)/2), A021913, A067046, A067047, A067048.

Programs

  • Maple
    seq(lcm(n,n+1,n+2,n+3,n+4,n+5)/60,n=0..30)
  • Mathematica
    Table[(LCM@@(n+Range[0,5]))/60,{n,0,40}]  (* Harvey P. Dale, Apr 17 2011 *)
  • PARI
    a(n)=lcm([n..n+5])/60 \\ Charles R Greathouse IV, Sep 30 2016

Formula

a(n) = n*(n+1)*(n+2)*(n+3)*(n+4)*(n+5)*(4*(n^4 mod 5)+1)/(1800*((n^3 mod 4)+((n-1)^3 mod 4)+1)).
a(n) = binomial(n+5,6)/(gcd(n,5)*(A021913(n-1)+1)).
a(n) = binomial(n+5,6)/(gcd(n,5)*floor(((n-1) mod 4)/2+1)). - Gary Detlefs, Apr 22 2011
Sum_{n>=1} 1/a(n) = 92 + (54/5-18*sqrt(5)+6*sqrt(178-398/sqrt(5)))*Pi. - Amiram Eldar, Sep 29 2022

A241262 Array t(n,k) = binomial(n*k, n+1)/n, where n >= 1 and k >= 2, read by ascending antidiagonals.

Original entry on oeis.org

1, 2, 3, 5, 10, 6, 14, 42, 28, 10, 42, 198, 165, 60, 15, 132, 1001, 1092, 455, 110, 21, 429, 5304, 7752, 3876, 1020, 182, 28, 1430, 29070, 57684, 35420, 10626, 1995, 280, 36, 4862, 163438, 444015, 339300, 118755, 24570, 3542, 408, 45, 16796, 937365, 3506100, 3362260, 1391280, 324632, 50344, 5850, 570, 55
Offset: 1

Views

Author

Jean-François Alcover, Apr 18 2014

Keywords

Comments

About the "root estimation" question asked in MathOverflow, one can check (at least numerically) that, for instance with k = 4 and a = 1/11, the series a^-1 + (k - 1) + Sum_{n>=} (-1)^n*binomial(n*k, n+1)/n*a^n evaluates to the positive solution of x^k = (x+1)^(k-1).
Row 1 is A000217 (triangular numbers),
Row 2 is A006331 (twice the square pyramidal numbers),
Row 3 is A067047(3n) = lcm(3n, 3n+1, 3n+2, 3n+3)/12 (from column r=4 of A067049),
Row 4 is A222715(2n) = (n-1)*n*(2n-1)*(4n-3)*(4n-1)/15,
Row 5 is not in the OEIS.
Column 1 is A000108 (Catalan numbers),
Column 2 is A007226 left shifted 1 place,
Column 4 is A007228 left shifted 1 place,
Column 5 is A124724 left shifted 1 place,
Column 6 is not in the OEIS.

Examples

			Array begins:
    1,    3,     6,     10,      15,      21, ...
    2,   10,    28,     60,     110,     182, ...
    5,   42,   165,    455,    1020,    1995, ...
   14,  198,  1092,   3876,   10626,   24570, ...
   42, 1001,  7752,  35420,  118755,  324632, ...
  132, 5304, 57684, 339300, 1391280, 4496388, ...
  etc.
		

References

  • N. S. S. Gu, H. Prodinger, S. Wagner, Bijections for a class of labeled plane trees, Eur. J. Combinat. 31 (2010) 720-732, doi|10.1016/j.ejc.2009.10.007, Theorem 2

Crossrefs

Programs

  • Mathematica
    t[n_, k_] := Binomial[n*k, n+1]/n; Table[t[n-k+2, k], {n, 1, 10}, {k, 2, n+1}] // Flatten
Showing 1-4 of 4 results.