A067051 The smallest k>1 such that k divides sigma(k*n) is equal to 3.
2, 8, 18, 32, 49, 50, 72, 98, 128, 162, 169, 196, 200, 242, 288, 338, 361, 392, 441, 450, 512, 578, 648, 676, 722, 784, 800, 882, 961, 968, 1058, 1152, 1225, 1250, 1352, 1369, 1444, 1458, 1521, 1568, 1682, 1764, 1800, 1849, 1922, 2048, 2178, 2312, 2450, 2592
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- R. J. Mathar, OEIS A074629
Programs
-
Magma
[n: n in [1..3*10^3] | (SumOfDivisors(n) mod 6) eq 3]; // Vincenzo Librandi, Dec 11 2015
-
Maple
select(t -> numtheory:-sigma(t) mod 6 = 3, [$1..10000]); # Robert Israel, Dec 11 2015
-
Mathematica
Select[Range@ 2600, Mod[DivisorSigma[1, #], 6] == 3 &] (* Michael De Vlieger, Dec 10 2015 *)
-
PARI
isok(n) = (sigma(2*n) % 2) && !(sigma(3*n) % 3); \\ Michel Marcus, Dec 26 2013
Formula
In the prime factorization of n, no odd prime has odd exponent, and 2 has odd exponent or at least one prime == 1 (mod 6) has exponent == 2 (mod 6). - Robert Israel, Dec 11 2015
{n: A049605(n) = 3}. - R. J. Mathar, May 19 2020
{n: A084301(n) = 3 }. - R. J. Mathar, May 19 2020
Comments