cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A056699 First differences are 2,1,-2,3 (repeated).

Original entry on oeis.org

1, 3, 4, 2, 5, 7, 8, 6, 9, 11, 12, 10, 13, 15, 16, 14, 17, 19, 20, 18, 21, 23, 24, 22, 25, 27, 28, 26, 29, 31, 32, 30, 33, 35, 36, 34, 37, 39, 40, 38, 41, 43, 44, 42, 45, 47, 48, 46, 49, 51, 52, 50, 53, 55, 56, 54, 57, 59, 60, 58, 61, 63, 64, 62, 65, 67, 68, 66
Offset: 1

Views

Author

Michael Knauth (knauth_jur(AT)yahoo.de), Nov 21 2003

Keywords

Comments

Second quadrisection of natural numbers shifted right two places. - Ralf Stephan, Jun 10 2005
A permutation of the natural numbers partitioned into quadruples [4k-3,4k-1,4k,4k-2] for k > 0. Partition the natural number sequence into quadruples starting with (1,2,3,4); swap the second and third elements, then swap the third and fourth elements; repeat for all quadruples. - Guenther Schrack, Oct 18 2017

Crossrefs

Inverse: A284307.
Sequence of fixed points: A016813(n-1) for n > 0.
Odd elements: A005408(n-1) for n > 0.
Indices of odd elements: A042963(n) for n > 0.
Even elements: 2*A103889(n) for n > 0.
Indices of even elements: A014601(n) for n > 0.

Programs

  • MATLAB
    a = [1 3 4 2];
    max = 10000;  % Generation of a b-file
    for n := 5:max
       a(n) = a(n-4) + 4;
    end;
    % Guenther Schrack, Oct 18 2017
    
  • Magma
    [Floor((n - ((-1)^n + (-1)^(n*(n-1)/2)*(2+(-1)^n)) / 2)): n in [1..100]]; // Vincenzo Librandi, Feb 05 2018
  • Mathematica
    LinearRecurrence[{1,0,0,1,-1},{1,3,4,2,5},70] (* Harvey P. Dale, May 10 2014 *)
    Table[Floor[(n - ((-1)^n + (-1)^(n (n - 1) / 2) (2 + (-1)^n)) / 2)], {n, 100}] (* Vincenzo Librandi, Feb 05 2018 *)
  • PARI
    for(n=1, 10000, print1(n - ((-1)^n + (-1)^(n*(n-1)/2)*(2+(-1)^n))/2, ", ")) \\ Guenther Schrack, Oct 18 2017
    

Formula

G.f.: x*(2*x^4 - 2*x^3 + x^2 + 2*x + 1)/((x-1)^2*(x+1)*(x^2+1)). - Colin Barker, Nov 08 2012
From Guenther Schrack, Oct 18 2017: (Start)
a(n) = a(n-4) + 4 for n > 4.
a(n) = n + periodic[0,1,1,-2].
a(n) = A092486(A067060(n) - 1) for n > 0.
a(n) = A292576(n) - 2*((-1)^floor(n/2)) for n > 0.
a(A116966(n-1)) = A263449(n-1) for n > 0.
A263449(a(n) - 1) = A116966(n-1) for n > 0.
a(n+2) - a(n) = (-1)^floor(n^2/4)*A132400(n+1) for n > 0.
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5. (End)
a(n) = A298364(n-1) + 1 for n > 1. - Guenther Schrack, Feb 04 2018

A284307 Permutation of the natural numbers partitioned into quadruples [4k-3, 4k, 4k-2, 4k-1], k > 0.

Original entry on oeis.org

1, 4, 2, 3, 5, 8, 6, 7, 9, 12, 10, 11, 13, 16, 14, 15, 17, 20, 18, 19, 21, 24, 22, 23, 25, 28, 26, 27, 29, 32, 30, 31, 33, 36, 34, 35, 37, 40, 38, 39, 41, 44, 42, 43, 45, 48, 46, 47, 49, 52, 50, 51, 53, 56, 54, 55, 57, 60, 58, 59, 61, 64, 62, 63, 65, 68, 66, 67
Offset: 1

Views

Author

Guenther Schrack, Mar 24 2017

Keywords

Comments

Partition the natural number sequence into quadruples starting with (1, 2, 3, 4); swap the third and fourth element, then swap the second and third element; repeat for all quadruples.

Crossrefs

Inverse: A056699.
Subsequences:
elements with odd index: A042963(n), n > 0
elements with even index: A014601(A103889(n)), n > 0
odd elements: A005408(n-1), n > 0
indices of odd elements: A042948(n), n > 0
even elements: 2*A103889(n), n > 0
indices of even elements: A042964(n), n > 0
Sequence of fixed points: A016813(n-1), n > 0
Every fourth element starting at:
n=1: a(4n-3) = 4n-3 = A016813(n-1), n > 0
n=2: a(4n-2) = 4n = A008586(n), n > 0
n=3: a(4n-1) = 4n-2 = A016825(n-1), n > 0
n=4: a(4n) = 4n-1 = A004767(n-1), n > 0
Difference between pairs of elements:
a(2n+1)-a(2n-1) = A010684(n-1), n > 0
Compositions:
a(n) = A133256(A116966(n-1)), n > 0
a(A042948(n)) = A005408(n-1), n > 0
A067060(a(n)) = A092486(n), n > 0

Programs

  • MATLAB
    a = [1 4 2 3];
    max = (specify);
    for n = 5:max
       a(n) = a(n-4) + 4;
    end;
    
  • Mathematica
    Table[n + ((-1)^n - (-1)^(n (n - 1)/2) (1 + 2 (-1)^n))/2, {n, 68}] (* Michael De Vlieger, Mar 28 2017 *)
    LinearRecurrence[{1,0,0,1,-1},{1,4,2,3,5},70] (* or *) {#[[1]],#[[4]], #[[2]],#[[3]]}&/@Partition[Range[70],4]//Flatten(* Harvey P. Dale, Sep 27 2017 *)
  • PARI
    for(n=1, 68, print1(n + ((-1)^n - (-1)^(n*(n - 1)/2)*(1 + 2*(-1)^n))/2,", ")) \\ Indranil Ghosh, Mar 29 2017

Formula

a(1)=1, a(2)=4, a(3)=2, a(4)=3, a(n) = a(n-4) + 4, n > 4.
O.g.f.: (x^4 + x^3 - 2*x^2 + 3x - 1)/(x^5 - x^4 - x + 1).
a(n) = n + ((-1)^n - (-1)^(n*(n-1)/2)*(1 + 2*(-1)^n))/2.
a(n) = n + (-1)^n*(1 - (-1)^(n*(n-1)/2) - (i^n - (-i)^n))/2.
Linear recurrence: a(n) = a(n-1) + a(n-4) - a(n-5), n > 5.
First differences, periodic: (3, -2, 1, 2), repeat.
a(n) = (2*n - 3*cos(n*Pi/2) + cos(n*Pi) + sin(n*Pi/2))/2. - Wesley Ivan Hurt, Apr 01 2017

A298364 Permutation of the natural numbers partitioned into quadruples [4k-2, 4k-1, 4k-3, 4k] for k > 0.

Original entry on oeis.org

2, 3, 1, 4, 6, 7, 5, 8, 10, 11, 9, 12, 14, 15, 13, 16, 18, 19, 17, 20, 22, 23, 21, 24, 26, 27, 25, 28, 30, 31, 29, 32, 34, 35, 33, 36, 38, 39, 37, 40, 42, 43, 41, 44, 46, 47, 45, 48, 50, 51, 49, 52, 54, 55, 53, 56, 58, 59, 57, 60, 62, 63, 61, 64, 66, 67, 65
Offset: 1

Views

Author

Guenther Schrack, Jan 18 2018

Keywords

Comments

Partition the natural number sequence into quadruples starting with (1,2,3,4); swap the first and second elements, then swap the second and third elements; repeat for all quadruples.

Crossrefs

Inverse: A292576.
Sequence of fixed points: A008586(n) for n > 0.
First differences: (-1)^floor(n^2/4)*A068073(n-1) for n > 0.
Subsequences:
elements with odd index: A042963(A103889(n)) for n > 0.
elements with even index A014601(n) for n > 0.
odd elements: A166519(n-1) for n > 0.
indices of odd elements: A042964(n) for n > 0.
even elements: A005843(n) for n > 0.
indices of even elements: A042948(n) for n > 0.
Other similar permutations: A116966, A284307, A292576.

Programs

  • MATLAB
    a = [2 3 1 4];
    max = 10000;    % Generation of b-file.
    for n := 5:max
       a(n) = a(n-4) + 4;
    end;
    
  • Mathematica
    Nest[Append[#, #[[-4]] + 4] &, {2, 3, 1, 4}, 63] (* or *)
    Array[# + ((-1)^# + ((-1)^(# (# - 1)/2)) (1 - 2 (-1)^#))/2 &, 67] (* Michael De Vlieger, Jan 23 2018 *)
    LinearRecurrence[{1,0,0,1,-1},{2,3,1,4,6},70] (* Harvey P. Dale, Dec 12 2018 *)
  • PARI
    for(n=1, 100, print1(n + ((-1)^n + ((-1)^(n*(n-1)/2))*(1 - 2*(-1)^n))/2, ", "))

Formula

O.g.f.: (3*x^3 - 2*x^2 + x + 2)/(x^5 - x^4 - x - 1).
a(1) = 2, a(2) = 3, a(3) = 1, a(4) = 4, a(n) = a(n-4) + 4 for n > 4.
a(n) = n + ((-1)^n + ((-1)^(n*(n-1)/2))*(1 - 2*(-1)^n))/2.
a(n) = n + (cos(n*Pi) - cos(n*Pi/2) + 3*sin(n*Pi/2))/2.
a(n) = 2*floor((n+1)/2) - 4*floor((n+1)/4) + floor(n/2) + 2*floor(n/4).
a(n) = n + (-1)^floor((n-1)^2/4)*A140081(n) for n > 0.
a(n) = A056699(n+1) - 1, n > 0.
a(n+2) = A168269(n+1) - a(n), n > 0.
a(n+2) = a(n) + (-1)^floor((n+1)^2/4)*A132400(n+2) for n > 0.
Linear recurrence: a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5.
First differences: periodic, (1, -2, 3, 2) repeat.
Compositions:
a(n) = A080412(A116966(n-1)) for n > 0.
a(n) = A284307(A256008(n)) for n > 0.
a(A067060(n)) = A133256(n) for n > 0.
A116966(a(n+1)-1) = A092486(n) for n >= 0.
A056699(a(n)) = A256008(n) for n > 0.

A067061 A permutation of the natural numbers.

Original entry on oeis.org

4, 1, 5, 2, 6, 3, 10, 7, 11, 8, 12, 9, 16, 13, 17, 14, 18, 15, 22, 19, 23, 20, 24, 21, 28, 25, 29, 26, 30, 27, 34, 31, 35, 32, 36, 33, 40, 37, 41, 38, 42, 39, 46, 43, 47, 44, 48, 45, 52, 49, 53, 50, 54, 51, 58, 55, 59, 56, 60, 57, 64, 61, 65, 62, 66, 63, 70, 67, 71, 68, 72, 69
Offset: 1

Views

Author

Amarnath Murthy, Jan 03 2002

Keywords

Comments

Start with the sequence of natural numbers. Rearrange the sequence so that any two consecutive numbers differ by at least 3, by the following process.
Move 1 by the minimum number of steps required to the right.
Move 2 by the minimum number of steps required to the right, etc.
Move the first element which is required to be moved by the minimum number of steps in the sequence obtained by the previous step.
Initial sequence 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,...
after one step.. 2,3,4,1,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,...
after two steps. 3,4,1,5,2,6,7,8,9,10,11,12,13,14,15,16,17,18,19,...
after 3 steps... 4,1,5,2,6,3,8,9,10,7,11,12,13,14,15,16,17,18,19,...
Start with 4. Decrease by 3 then increase by 4 then decrease by 3 and then increase by 4 Decrease by 3 then increase by 7 to obtain first seven terms. Repeat the process for getting the subsequent terms.

Crossrefs

Cf. A067060.

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 03 2002

A227792 Expansion of (1 + 6*x + 17*x^2 - x^3 - 3*x^4)/(1 - 6*x^2 + x^4).

Original entry on oeis.org

1, 6, 23, 35, 134, 204, 781, 1189, 4552, 6930, 26531, 40391, 154634, 235416, 901273, 1372105, 5253004, 7997214, 30616751, 46611179, 178447502, 271669860, 1040068261, 1583407981, 6061962064, 9228778026, 35331704123, 53789260175, 205928262674
Offset: 0

Views

Author

Ralf Stephan, Sep 23 2013

Keywords

Comments

Also, values i where A067060(i)/i reaches a new maximum (conjectured).

Crossrefs

Cf. A041017.

Programs

  • Mathematica
    CoefficientList[Series[(1+6x+17x^2-x^3-3x^4)/(1-6x^2+x^4),{x,0,40}],x] (* or *) LinearRecurrence[{0,6,0,-1},{1,6,23,35,134},40] (* Harvey P. Dale, Jun 12 2021 *)
  • PARI
    a(n)=polcoeff((-3*x^4-x^3+17*x^2+6*x+1)/(x^4-6*x^2+1)+O(x^100),n)

Formula

G.f.: (1+6*x+17*x^2-x^3-3*x^4)/((1+2*x-x^2)*(1-2*x-x^2)).
a(2n) = A038723(n+1), n>0.
a(2n+1) = A001109(n+2).
a(n) = (1/4) * (A135532(n+3) + (-1)^n*A001333(n+2) ).

A115659 Permutation of natural numbers generated by 2-rowed array shown below.

Original entry on oeis.org

0, 3, 1, 4, 2, 7, 5, 8, 6, 11, 9, 12, 10, 15, 13, 16, 14, 19, 17, 20, 18, 23, 21, 24, 22, 27, 25, 28, 26, 31, 29, 32, 30, 35, 33, 36, 34, 39, 37, 40, 38, 43, 41, 44, 42, 47, 45, 48, 46, 51, 49, 52, 50, 55, 53, 56, 54, 59, 57, 60, 58, 63, 61, 64, 62
Offset: 1

Views

Author

Giovanni Teofilatto, Mar 18 2006

Keywords

Comments

0 3 4 7 8 11 12 15 ...: integers congruent to 0 or 3 mod 4.
1 2 5 6 9 10 13 14 ...: integers congruent to 1 or 2 mod 4.
Essentially the same as A067060. - Hugo Pfoertner, Jun 16 2024

References

  • M. Cerasoli, F. Eugeni and M. Protasi, Elementi di Matematica Discreta, Bologna 1988.
  • Emanuele Munarini and Norma Zagaglia Salvi, Matematica Discreta, UTET, CittaStudiEdizioni, Milano 1997.

Crossrefs

Programs

  • Magma
    I:=[0, 3, 1, 4, 2, 7]; [n le 6 select I[n] else Self(n-1)+Self(n-4)-Self(n-5): n in [1..70]]; // Vincenzo Librandi, Dec 02 2016
  • Mathematica
    Join[{0}, LinearRecurrence[{1, 0, 0, 1, -1}, {3, 1, 4, 2, 7}, 70]] (* Vincenzo Librandi, Dec 02 2016 *)

Formula

For n>0, a(n+4k) = a(n) + 4k, with k>=0.
G.f.: x^2*(3 - 2*x + 3*x^2 - 2*x^3 + 2*x^4)/(1 - x - x^4 + x^5). - Philippe Deléham, Dec 02 2016

Extensions

Entries corrected by R. J. Mathar, Oct 25 2011
Showing 1-6 of 6 results.