A075012 Duplicate of A067090.
2, 3, 5, 7, 8, 981, 114462, 13082645, 1471900839, 1635537203, 1799173568
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(4) = floor(10121416/2468) = floor(4101.05996758508914100486223662885) = 4101. a(7) = floor(16182022242628/2468101214) = floor(6556.4662222268166673) = 6556.
z[n_] := Block[{a = "", m = n}, While[ Length[m] > 0, a = StringJoin[a, ToString[m[[1]]]]; m = Drop[m, 1]]; ToExpression[a]]; Table[ Floor[ z[Table[2i, {i, n + 1, 2n}]] / z[ Table[2i, {i, 1, n}]]], {n, 1, 30}]
a(3) = floor[12108/246] = 49. a(8) = floor [ 3230282624222018/246810121416] = floor[13088.128662184629278356029087656] = 13088.
Table[Floor[FromDigits[Flatten[IntegerDigits/@Range[4n,2n+2,-2]]]/ FromDigits[ Flatten[IntegerDigits/@Range[2,2n,2]]]],{n,30}] (* Harvey P. Dale, Mar 11 2019 *)
a(4) = floor(2468/1357) = floor(1.81871775976418570375829034635225) = 1. a(20000) = 18175.
f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2k]]; y = StringJoin[y, ToString[2k - 1]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 75} ] With[{ev=Range[2,140,2],od=Range[1,139,2]},Table[Floor[FromDigits[ Flatten[ IntegerDigits/@ Take[ev,n]]]/FromDigits[Flatten[ IntegerDigits/@ Take[od,n]]]],{n,70}]] (* Harvey P. Dale, Aug 19 2011 *)
ae(n)=my(s=""); for(k=1, n, s=Str(s, 2*k)); eval(s); \\ A019520 ao(n)=my(s=""); for(k=1, n, s=Str(s, 2*k-1)); eval(s); \\ A019521 a(n) = ae(n)\ao(n); \\ Michel Marcus, Dec 07 2021
a(4) = floor[9111315/1357] = floor[6714.30729550478997789240972733972] = 6714.
f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2n + 2k -1]]; y = StringJoin[y, ToString[2k - 1]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 32} ]
a(4)= floor[1513119/1357] =floor[1115.047162859248341930729550479] = 1115.
f:= proc(n) local k; floor(parse(cat(seq(2*k-1,k=2*n .. n+1,-1)))/parse(cat(seq(2*k-1,k=1..n)))) end proc: map(f, [$1..50]); # Robert Israel, Nov 06 2024
f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[ToString[2n + 2k - 1], x]; y = StringJoin[y, ToString[2k - 1]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]/10]] ); Table[ f[n], {n, 1, 32} ]
a(10) = floor[ 2468101214161820/12345678910] = floor[199916.20000441271803658143252326] = 199916.
f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2^k]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 40} ] ccat[n_,i_]:=FromDigits[Flatten[IntegerDigits/@Range[i,n,i]]]; Table[ Floor[ ccat[2m,2]/ccat[m,1]],{m,40}] (* Harvey P. Dale, Jul 04 2012 *)
a(6)= floor [ 248163264/123456] = floor[2010.13530326594090202177293] = 2010.
f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[2^k]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 20} ] Table[Floor[FromDigits[Flatten[IntegerDigits/@(2^Range[n])]]/FromDigits[ Flatten[IntegerDigits/@Range[n]]]],{n,20}] (* Harvey P. Dale, Dec 30 2018 *)
a(4)= floor [ 392781/1234] = floor[318.299027552674230145867098865478] = 318.
f[n_] := (k = 1; x = y = "0"; While[k < n + 1, x = StringJoin[x, ToString[3^k]]; y = StringJoin[y, ToString[k]]; k++ ]; Return[ Floor[ ToExpression[x] / ToExpression[y]]] ); Table[ f[n], {n, 1, 15} ] Table[Floor[FromDigits[Flatten[IntegerDigits/@(3^Range[n])]]/ FromDigits[ Flatten[IntegerDigits/@Range[n]]]],{n,15}] (* Harvey P. Dale, Mar 10 2019 *)
Comments