A067266 Numbers n such that omega(n)=M(n) where omega(n) is A001221(n) and M(n) is the Mertens function A002321(n).
95, 96, 97, 217, 228, 335, 337, 339, 342, 349, 395, 397, 398, 417, 543, 544, 546, 550, 603, 604, 605, 802, 804, 807, 808, 809, 817, 819, 820, 871, 872, 873, 879, 881, 901, 922, 930, 938, 945, 947, 949, 952, 962, 969, 971, 973, 975, 979, 981, 989, 991, 993
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000 (first 1369 terms from Robert Israel)
Programs
-
Haskell
a067266 n = a067266_list !! (n-1) a067266_list = filter (\x -> a001221 x == a002321 x) [1..] -- Reinhard Zumkeller, Jul 14 2014
-
Maple
N:= 10^4: # to get all terms up to N A:= [seq(numtheory[mobius](n),n=1..N)]: Mertens:= map(round,Statistics:-CumulativeSum(A)): omega:= t -> nops(numtheory:-factorset(t)): select(t -> omega(t) = Mertens[t], [$1..N]); # Robert Israel, Jul 14 2014
-
Mathematica
With[{nn=1000},Flatten[Position[Thread[{Accumulate[Array[ MoebiusMu,nn]], PrimeNu[ Range[ nn]]}],?(First[#]==Last[#]&),{1},Heads->False]]] (* _Harvey P. Dale, Jul 14 2014 *)
-
PARI
isok(n) = (omega(n) == mertens(n)); \\ Michel Marcus, Sep 24 2013
Comments