A067272 a(n) = 2*10^(n-1) - 1.
1, 19, 199, 1999, 19999, 199999, 1999999, 19999999, 199999999, 1999999999, 19999999999, 199999999999, 1999999999999, 19999999999999, 199999999999999, 1999999999999999, 19999999999999999, 199999999999999999, 1999999999999999999, 19999999999999999999, 199999999999999999999
Offset: 1
Examples
T(19) = 190 begins with 19. Hence 19 is a term of the sequence.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- Index entries for linear recurrences with constant coefficients, signature (11,-10).
Programs
-
Magma
[2*10^(n-1)-1 : n in [1..20]]; // Vincenzo Librandi, Nov 01 2011
-
Mathematica
(*returns true if a begins with b, false o.w.*) f2[a_, b_] := Module[{c, d, e, g, h, i, r}, r = False; c = ToString[a]; d = ToString[b]; g = StringPosition[c, d]; h = Length[g]; If[h > 0, i = g[[h]]; If[i[[1]] == 1, r = True]]; r]; Do[If[f2[n(n + 1)/2, n], Print[n]], {n, 1, 10^6} ] CoefficientList[Series[(1 + 8 x)/((1 - x) (1 - 10 x)), {x, 0, 20}], x] (* Vincenzo Librandi, Aug 13 2014 *)
-
PARI
a(n) = 2*10^(n-1)-1; \\ Michel Marcus, Jul 06 2024
Formula
a(n) = 2*10^(n-1) - 1. - Benoit Cloitre, Feb 28 2002
a(n) = 10*a(n-1) + 9. - Vincenzo Librandi, Nov 01 2011
G.f.: x*(1+8*x)/((1-x)*(1-10*x)). - Vincenzo Librandi, Aug 13 2014
From Elmo R. Oliveira, Jun 14 2025: (Start)
E.g.f.: (4 - 5*exp(x) + exp(10*x))/5.
a(n) = 11*a(n-1) - 10*a(n-2) for n > 2. (End)
Extensions
a(7)-a(19) from Vincenzo Librandi, Nov 01 2011
Comments