cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A077650 Initial decimal digit of sigma(n), the sum of divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 1, 8, 1, 1, 1, 1, 2, 1, 2, 2, 3, 1, 3, 2, 4, 3, 3, 2, 6, 3, 4, 4, 5, 3, 7, 3, 6, 4, 5, 4, 9, 3, 6, 5, 9, 4, 9, 4, 8, 7, 7, 4, 1, 5, 9, 7, 9, 5, 1, 7, 1, 8, 9, 6, 1, 6, 9, 1, 1, 8, 1, 6, 1, 9, 1, 7, 1, 7, 1, 1, 1, 9, 1, 8, 1, 1, 1, 8, 2, 1, 1, 1, 1, 9, 2, 1, 1, 1, 1, 1, 2, 9, 1, 1, 2, 1, 2, 1, 2, 1
Offset: 1

Views

Author

Labos Elemer, Nov 19 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Table[First[IntegerDigits[DivisorSigma[1, w]]], {w, 1, 128}]
  • PARI
    a(n) = digits(sigma(n))[1]; \\ Michel Marcus, Nov 18 2017

Formula

a(n) = A000030(A000203(n)).

A067343 Sum of decimal digits of n equals sum of decimal digits of sum of divisors of n.

Original entry on oeis.org

1, 15, 24, 64, 69, 78, 90, 114, 133, 147, 153, 186, 198, 258, 270, 276, 288, 306, 339, 360, 366, 393, 429, 474, 492, 495, 507, 522, 582, 588, 609, 618, 627, 639, 708, 717, 738, 762, 763, 801, 817, 834, 846, 871, 906, 933, 960, 978, 990, 1062, 1080, 1083
Offset: 1

Views

Author

Labos Elemer, Jan 16 2002

Keywords

Crossrefs

Programs

  • PARI
    sd(n) = digs = digits(n); sum(i=1, #digs, digs[i]);
    isok(n) = sd(n) == sd(sigma(n)); \\ Michel Marcus, Dec 26 2013

Formula

A256635 a(n) = the smallest number k such that the base-10 digital sum of sigma(k) is n.

Original entry on oeis.org

1, 19, 2, 3, 13, 5, 4, 7, 10, 12, 28, 18, 192, 67, 42, 273, 52, 138, 324, 336, 196, 300, 372, 438, 2716, 997, 1590, 3468, 2512, 3260, 5817, 5692, 4112, 17472, 10852, 15840, 18496, 27252, 22860, 24300, 31572, 35172, 61488, 165652, 138438, 265252, 285652, 292860
Offset: 1

Views

Author

Jaroslav Krizek, Apr 06 2015

Keywords

Comments

a(n) = the smallest number k such that A007953(A000203(k)) = n.
Note that A007953(A000203(k)) is also A067342(k).

Examples

			For n = 5; digital sum of sigma(13) = digital sum of 14 = 5. The number 13 is the smallest number with this property so a(5) = 13.
		

Crossrefs

Programs

  • Magma
    A256635:=func; [A256635(n):n in[1..50]];
    
  • Maple
    N := 10^6: # return all values before the first > N
    for n from 1 to N do
       v:= convert(convert(numtheory:-sigma(n),base,10),`+`);
       if not assigned(A[v]) then A[v]:= n fi;
    od:
    for count from 1 while assigned(A[count]) do od:
    seq(A[i],i=1..count-1); # Robert Israel, Apr 09 2015
  • Mathematica
    f[n_] := Block[{k = 1}, While[Plus @@ IntegerDigits[DivisorSigma[1, k]] != n, k++]; k]; Array[f, 48] (* Michael De Vlieger, Apr 07 2015 *)
  • PARI
    a(n) = {my(k = 1); while(sumdigits(sigma(k)) != n, k++); k;} \\ Michel Marcus, Apr 09 2015
    
  • Python
    from sympy.ntheory.factor_ import divisor_sigma
    def A256635(n):
        k = 1
        while sum(int(d) for d in str(divisor_sigma(k))) != n:
            k += 1
        return k # Chai Wah Wu, Apr 18 2015

A277216 Product of decimal digits of sum of divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 2, 8, 5, 3, 8, 2, 16, 4, 8, 8, 3, 8, 27, 0, 8, 6, 18, 8, 0, 3, 8, 0, 30, 0, 14, 6, 18, 32, 20, 32, 9, 24, 0, 30, 0, 8, 54, 16, 32, 56, 14, 32, 8, 35, 27, 14, 72, 20, 0, 14, 0, 0, 0, 0, 48, 12, 54, 0, 14, 32, 16, 48, 12, 54, 16, 14, 45, 28, 4, 8
Offset: 1

Views

Author

Jaroslav Krizek, Oct 05 2016

Keywords

Comments

Conjecture: a(n) = n only for numbers 1 and 210; sigma(210) = 576; a(210) = 5*7*6 = 210.

Examples

			a(12) = 16 because sigma(12) = 28; 2*8 = 16.
		

Crossrefs

Cf. A067342 (sum of decimal digits of sigma(n)).

Programs

  • Magma
    [&*Intseq(SumOfDivisors(n)): n in [1..100000]];
    
  • Maple
    seq( convert(convert(numtheory:-sigma(n),base,10),`*`), n=1..100); # Robert Israel, Oct 06 2016
  • Mathematica
    Table[Times @@ IntegerDigits@ DivisorSigma[1, n], {n, 75}] (* Michael De Vlieger, Oct 06 2016 *)
  • PARI
    a(n) = d = digits(sigma(n)); prod(k=1, #d, d[k]); \\ Michel Marcus, Oct 05 2016

Formula

a(n) = A007954(A000203(n)).

A277217 Numbers k for which the sum of digits of sigma(k) = the product of digits of sigma(k).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 86, 126, 131, 206, 207, 311, 1123, 1213, 2113, 4111, 10921, 12211, 16581, 21121, 21211, 22111, 39660, 51558, 52940, 60812, 61504, 63548, 68822, 81303, 83409, 87081, 87451, 89708, 94523, 97307, 106118, 108527, 110387, 111611, 120831, 160271
Offset: 1

Views

Author

Jaroslav Krizek, Oct 05 2016

Keywords

Comments

Numbers k such that A067342(k) = A277216(k).
Prime terms: 2, 3, 5, 7, 131, 311, 1123, 1213, 2113, 4111, 12211, ...
Corresponding values of sigma(a(n)): 1, 3, 4, 7, 6, 8, 132, 312, 132, 312, 312, 312, 1124, 1214, 2114, ...
Only 196 terms less than 35*10^8. - Robert G. Wilson v, Oct 07 2016
Alternatively, numbers k such that sigma(k) is in A034710. - Charlie Neder, Dec 27 2018

Examples

			86 is a term because sigma(86) = 132; sum and product of digits of 132 = 6.
		

Crossrefs

Cf. A067342 (sum of decimal digits of sigma(n)), A277216 (product of decimal digits of sigma(n)).

Programs

  • Magma
    [n: n in [1..100000] | &+Intseq(SumOfDivisors(n)) eq &*Intseq(SumOfDivisors(n))];
    
  • Mathematica
    Select[Range@ 200000, Total@ # == Times @@ # &@ IntegerDigits@ DivisorSigma[1, #] &] (* Michael De Vlieger, Oct 06 2016 *)
  • PARI
    isok(n) = my(d=digits(sigma(n))); vecprod(d) == vecsum(d); \\ Michel Marcus, Mar 02 2019

A067344 Sum of decimal digits of square of divisors of n equals sum of square of digits of n.

Original entry on oeis.org

1, 21, 41, 120, 242, 312, 323, 401, 501, 1040, 1114, 1141, 1204, 1214, 1233, 1241, 1304, 1503, 2033, 2115, 2133, 2140, 2403, 3010, 3014, 3124, 3211, 3304, 3322, 4001, 4012, 4121, 4301, 4310, 5130, 10044, 10214, 10242, 10320, 10324, 11042, 11115
Offset: 1

Views

Author

Labos Elemer, Jan 16 2002

Keywords

Examples

			n=51223, SquareSumDigit=25+1+4+4+9=43, Sigma[2,51223]=2623908580 with digit sum=43.
		

Crossrefs

Programs

  • Mathematica
    Do[s=Apply[Plus, IntegerDigits[DivisorSigma[2, n]]]- Apply[Plus, IntegerDigits[n]^2]; If[Equal[s, 0], Print[n]], {n, 1, 10000}]
    Select[Range[12000],Total[Flatten[IntegerDigits[#]^2]]== Total[ IntegerDigits[ DivisorSigma[2,#]]]&] (* Harvey P. Dale, Sep 12 2012 *)

Formula

A071422 a(n) = a(n-1) + sum of decimal digits of sigma(n), the sum of divisors of n.

Original entry on oeis.org

1, 4, 8, 15, 21, 24, 32, 38, 42, 51, 54, 64, 69, 75, 81, 85, 94, 106, 108, 114, 119, 128, 134, 140, 144, 150, 154, 165, 168, 177, 182, 191, 203, 212, 224, 234, 245, 251, 262, 271, 277, 292, 300, 312, 327, 336, 348, 355, 367, 379, 388, 405, 414, 417, 426, 429
Offset: 1

Views

Author

Labos Elemer, May 27 2002

Keywords

Crossrefs

Partial sums of A067342.

Programs

  • Mathematica
    s=0; Do[s=s+Apply[Plus, IntegerDigits[DivisorSigma[1, n]]]; Print[s], {n, 1, 128}]
    nxt[{n_,a_}]:={n+1,a+Total[IntegerDigits[DivisorSigma[1,n+1]]]}; Transpose[ NestList[nxt,{1,1},60]][[2]] (* Harvey P. Dale, Jan 25 2013 *)
Showing 1-7 of 7 results.