A067392 Sum of numbers <= n which have common prime factors with n.
0, 2, 3, 6, 5, 15, 7, 20, 18, 35, 11, 54, 13, 63, 60, 72, 17, 117, 19, 130, 105, 143, 23, 204, 75, 195, 135, 238, 29, 345, 31, 272, 231, 323, 210, 450, 37, 399, 312, 500, 41, 651, 43, 550, 495, 575, 47, 792, 196, 775, 510, 754, 53, 999, 440, 924, 627, 899, 59
Offset: 1
Examples
For n=24, a(24) = 2+3+4+6+8+9+10+12+14+15+16+18+20+21+22+24 = 204.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[0] cat [n*(n+1)/2-n*EulerPhi(n)/2: n in [2..60]]; // Vincenzo Librandi, Jul 19 2019
-
Mathematica
a[n_] := Plus@@Select[Range[1, n], GCD[ #, n]>1&] Join[{0}, Table[n (n + 1) / 2 - n EulerPhi@(n) / 2, {n, 2, 60}]] (* Vincenzo Librandi, Jul 19 2019 *)
-
PARI
A067392(n)={a=0; for(i=1, n, if(gcd(i, n)<>1, a=a+i)); a}
-
PARI
a(n) = sum(k=1, n, k*(gcd(k, n) != 1)); \\ Michel Marcus, May 08 2018
-
PARI
a(n) = if(n == 1, 0, n*(n + 1 - eulerphi(n))/2); \\ Amiram Eldar, Dec 03 2023
Formula
Not multiplicative.
a(p) = p where p is a prime; a(2^k) = 2^(k-1)*(2^(k-1) + 1).
G.f.: -Sum_{k>=2} mu(k)*k*x^k/(1 - x^k)^3. - Ilya Gutkovskiy, May 28 2019
Sum_{k=1..n} a(k) ~ (1/6 - 1/(Pi^2)) * n^3. - Amiram Eldar, Dec 03 2023
Comments