cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067392 Sum of numbers <= n which have common prime factors with n.

Original entry on oeis.org

0, 2, 3, 6, 5, 15, 7, 20, 18, 35, 11, 54, 13, 63, 60, 72, 17, 117, 19, 130, 105, 143, 23, 204, 75, 195, 135, 238, 29, 345, 31, 272, 231, 323, 210, 450, 37, 399, 312, 500, 41, 651, 43, 550, 495, 575, 47, 792, 196, 775, 510, 754, 53, 999, 440, 924, 627, 899, 59
Offset: 1

Views

Author

Labos Elemer, Jan 22 2002

Keywords

Comments

Sum of k <= n such that gcd(n,k) > 1.
V. S. Guba conjectured that for any positive n and prime p, a(n) != a(n+p). - Max Alekseyev, May 08 2024

Examples

			For n=24, a(24) = 2+3+4+6+8+9+10+12+14+15+16+18+20+21+22+24 = 204.
		

Crossrefs

Programs

  • Magma
    [0] cat [n*(n+1)/2-n*EulerPhi(n)/2: n in [2..60]]; // Vincenzo Librandi, Jul 19 2019
  • Mathematica
    a[n_] := Plus@@Select[Range[1, n], GCD[ #, n]>1&]
    Join[{0}, Table[n (n + 1) / 2 - n EulerPhi@(n) / 2, {n, 2, 60}]] (* Vincenzo Librandi, Jul 19 2019 *)
  • PARI
    A067392(n)={a=0; for(i=1, n, if(gcd(i, n)<>1, a=a+i)); a}
    
  • PARI
    a(n) = sum(k=1, n, k*(gcd(k, n) != 1)); \\ Michel Marcus, May 08 2018
    
  • PARI
    a(n) = if(n == 1, 0, n*(n + 1 - eulerphi(n))/2); \\ Amiram Eldar, Dec 03 2023
    

Formula

a(n) = n(n+1)/2 - n*phi(n)/2 = A000217(n)-A023896(n), for n>=2.
Not multiplicative.
a(p) = p where p is a prime; a(2^k) = 2^(k-1)*(2^(k-1) + 1).
G.f.: -Sum_{k>=2} mu(k)*k*x^k/(1 - x^k)^3. - Ilya Gutkovskiy, May 28 2019
Sum_{k=1..n} a(k) ~ (1/6 - 1/(Pi^2)) * n^3. - Amiram Eldar, Dec 03 2023