cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067464 Primes p such that sigma(p-1)+sigma(p+1) is prime.

Original entry on oeis.org

2, 5, 37, 101, 257, 401, 4801, 12101, 22501, 25537, 25601, 31249, 33857, 160001, 217157, 401957, 404497, 476101, 512657, 583697, 1020101, 1270417, 1322501, 1503377, 1674437, 1943237, 2005057, 2016401, 2056357, 2689601, 2755601, 2842597, 3686401, 3920401
Offset: 1

Views

Author

Benoit Cloitre, Feb 23 2002

Keywords

Examples

			401 is here as 401 is prime and sigma(401 - 1) + sigma(401 + 1) = 961 + 816 = 1777 which is prime. - _David A. Corneth_, Feb 17 2021
		

Crossrefs

Cf. A028982.

Programs

  • Mathematica
    Select[Prime[Range[300000]],PrimeQ[DivisorSigma[1,#-1]+DivisorSigma[ 1, #+1]]&] (* Harvey P. Dale, Jul 13 2018 *)
  • PARI
    isok(p) = isprime(p) && isprime(sigma(p-1)+sigma(p+1)); \\ Michel Marcus, Feb 17 2021
    
  • PARI
    upto(n) = {my(res = List()); for(i = 1, sqrtint(n + 1), if(isprime(2*i^2 - 1) && isprime(sigma(2*i^2-2) + sigma(2*i^2)) && 2*i^2 - 1 <= n, listput(res, 2*i^2 - 1); ); if(isprime(i^2 + 1) && isprime(sigma(i^2) + sigma(i^2 + 2)), listput(res, i^2 + 1); ) ); Set(res) } \\ David A. Corneth, Feb 17 2021

Extensions

More terms from Sascha Kurz, Mar 18 2002