cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067513 Number of divisors d of n such that d+1 is prime.

Original entry on oeis.org

1, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 5, 1, 2, 1, 4, 1, 4, 1, 4, 1, 3, 1, 5, 1, 2, 1, 4, 1, 5, 1, 4, 1, 2, 1, 7, 1, 2, 1, 5, 1, 4, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 4, 1, 4, 1, 3, 1, 8, 1, 2, 1, 4, 1, 5, 1, 3, 1, 4, 1, 8, 1, 2, 1, 3, 1, 4, 1, 6, 1, 3, 1, 7, 1, 2, 1, 5, 1, 6, 1, 4, 1, 2, 1, 7, 1, 2, 1, 5, 1, 4, 1
Offset: 1

Views

Author

Amarnath Murthy, Feb 12 2002

Keywords

Comments

1, 2 and 4 are the only numbers such that for every divisor d, d+1 is a prime.
These and only these primes appear as prime divisors of any term of InvPhi(n) set if n is not empty, i.e., if n is from A002202. - Labos Elemer, Jun 24 2002
a(n) is the number of integers k such that n = k - k/p where p is one of the prime divisors of k. (See, e.g., A064097 and A333123, which are related to the mapping k -> k - k/p.) - Robert G. Wilson v, Jun 12 2022

Examples

			a(12) = 5 as the divisors of 12 are 1, 2, 3, 4, 6 and 12 and the corresponding primes are 2,3,5,7 and 13. Only 3+1 = 4 is not a prime.
		

Crossrefs

Even-indexed terms give A046886.
Cf. A005408 (positions of 1's), A051222 (of 2's).

Programs

  • Haskell
    a067513 = sum . map (a010051 . (+ 1)) . a027750_row
    -- Reinhard Zumkeller, Jul 31 2012
    
  • Maple
    A067513 := proc(n)
        local a,d;
        a := 0 ;
        for d in numtheory[divisors](n) do
            if isprime(d+1) then
                a := a+1 ;
            end if;
        end do:
        a ;
    end proc:
    seq(A067513(n),n=1..100) ; # R. J. Mathar, Aug 07 2022
  • Mathematica
    a[n_] := Length[Select[Divisors[n]+1, PrimeQ]]
    Table[Count[Divisors[n],?(PrimeQ[#+1]&)],{n,110}] (* _Harvey P. Dale, Feb 29 2012 *)
    a[n_] := DivisorSum[n, 1 &, PrimeQ[# + 1] &]; Array[a, 100] (* Amiram Eldar, Jan 11 2025 *)
  • PARI
    a(n)=sumdiv(n,d,isprime(d+1)) \\ Charles R Greathouse IV, Dec 23 2011
    
  • Python
    from sympy import divisors, isprime
    def a(n): return sum(1 for d in divisors(n, generator=True) if isprime(d+1))
    print([a(n) for n in range(1, 104)]) # Michael S. Branicky, Jul 12 2022

Formula

a(n) = 2 iff Bernoulli number B_{n} has denominator 6 (cf. A051222). - Vladeta Jovovic, Feb 13 2002
a(n) <= A141197(n). - Reinhard Zumkeller, Oct 06 2008
a(n) = A001221(A027760(n)). - Enrique Pérez Herrero, Dec 23 2011
a(n) = Sum_{k = 1..A000005(n)} A010051(A027750(n,k)+1). - Reinhard Zumkeller, Jul 31 2012
a(n) = A001221(A185633(n)) = A001222(A322312(n)). - Antti Karttunen, Jul 12 2022
Sum_{k=1..n} a(k) = n * (log(log(n)) + B) + O(n/log(n)), where B is a constant (Prachar, 1955). - Amiram Eldar, Jan 11 2025

Extensions

Edited by Dean Hickerson, Feb 12 2002