A067513 Number of divisors d of n such that d+1 is prime.
1, 2, 1, 3, 1, 3, 1, 3, 1, 3, 1, 5, 1, 2, 1, 4, 1, 4, 1, 4, 1, 3, 1, 5, 1, 2, 1, 4, 1, 5, 1, 4, 1, 2, 1, 7, 1, 2, 1, 5, 1, 4, 1, 4, 1, 3, 1, 6, 1, 3, 1, 4, 1, 4, 1, 4, 1, 3, 1, 8, 1, 2, 1, 4, 1, 5, 1, 3, 1, 4, 1, 8, 1, 2, 1, 3, 1, 4, 1, 6, 1, 3, 1, 7, 1, 2, 1, 5, 1, 6, 1, 4, 1, 2, 1, 7, 1, 2, 1, 5, 1, 4, 1
Offset: 1
Examples
a(12) = 5 as the divisors of 12 are 1, 2, 3, 4, 6 and 12 and the corresponding primes are 2,3,5,7 and 13. Only 3+1 = 4 is not a prime.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Yuchen Ding, On a conjecture of R. M. Murty and V. K. Murty, arXiv:2208.06704 [math.NT], 2022.
- Yuchen Ding, On a conjecture of R. M. Murty and V. K. Murty II, arXiv:2209.01087 [math.NT], 2022-2023.
- Steve Fan and Carl Pomerance, Shifted-prime divisors, arXiv:2401.10427 [math.NT], 2024.
- Mikhail R. Gabdullin, Moments of the shifted prime divisor function, arXiv preprint (2025). arXiv:2505.24050 [math.NT]
- M. Ram Murty and V. Kumar Murty, A variant of the Hardy-Ramanujan theorem, Hardy-Ramanujan Journal, Vol. 44 (2021), pp. 32-40.
- Karl Prachar, Über die Anzahl der Teiler einer natürlichen Zahl, welche die Form p-1 haben, Monatshefte für Mathematik, Vol. 59 (1955), pp. 91-97.
Crossrefs
Programs
-
Haskell
a067513 = sum . map (a010051 . (+ 1)) . a027750_row -- Reinhard Zumkeller, Jul 31 2012
-
Maple
A067513 := proc(n) local a,d; a := 0 ; for d in numtheory[divisors](n) do if isprime(d+1) then a := a+1 ; end if; end do: a ; end proc: seq(A067513(n),n=1..100) ; # R. J. Mathar, Aug 07 2022
-
Mathematica
a[n_] := Length[Select[Divisors[n]+1, PrimeQ]] Table[Count[Divisors[n],?(PrimeQ[#+1]&)],{n,110}] (* _Harvey P. Dale, Feb 29 2012 *) a[n_] := DivisorSum[n, 1 &, PrimeQ[# + 1] &]; Array[a, 100] (* Amiram Eldar, Jan 11 2025 *)
-
PARI
a(n)=sumdiv(n,d,isprime(d+1)) \\ Charles R Greathouse IV, Dec 23 2011
-
Python
from sympy import divisors, isprime def a(n): return sum(1 for d in divisors(n, generator=True) if isprime(d+1)) print([a(n) for n in range(1, 104)]) # Michael S. Branicky, Jul 12 2022
Formula
a(n) = 2 iff Bernoulli number B_{n} has denominator 6 (cf. A051222). - Vladeta Jovovic, Feb 13 2002
a(n) <= A141197(n). - Reinhard Zumkeller, Oct 06 2008
Sum_{k=1..n} a(k) = n * (log(log(n)) + B) + O(n/log(n)), where B is a constant (Prachar, 1955). - Amiram Eldar, Jan 11 2025
Extensions
Edited by Dean Hickerson, Feb 12 2002
Comments