cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067523 The smallest prime with a possible given digit sum.

Original entry on oeis.org

2, 3, 13, 5, 7, 17, 19, 29, 67, 59, 79, 89, 199, 389, 499, 599, 997, 1889, 1999, 2999, 4999, 6899, 17989, 8999, 29989, 39989, 49999, 59999, 79999, 98999, 199999, 389999, 598999, 599999, 799999, 989999, 2998999, 2999999, 4999999, 6999899, 8989999
Offset: 1

Views

Author

Amarnath Murthy, Feb 14 2002

Keywords

Comments

Except for 3 no other prime has a digit sum which is a multiple of 3. Hence the possible digit sums are 2,3,4,5,7,8,10,11,13,14,16,..., etc. Conjecture: For every possible digit sum there exists a prime.
For n > 2, this is (conjecturally) the smallest prime with digit sum A001651(n). - Lekraj Beedassy, Mar 04 2009

Crossrefs

Cf. A001651. Equals A067180 with the 0 terms removed.

Programs

  • Maple
    g:= proc(s, d) # integers of <=d digits with sum s
      local j;
      if s > 9*d then return [] fi;
      if d = 1 then return [s] fi;
      [seq(op(map(t -> j*10^(d-1)+ t, procname(s-j, d-1))), j=0..9)];
    end proc:
    f:= proc(n) local d, j, x, y;
      if n mod 3 = 0 then return 0 fi;
      for d from ceil(n/9) do
        if d = 1 then
          if isprime(n) and n < 10 then return n
          else next
        fi fi;
        for j from 1 to 9 do
           for y in g(n-j, d-1) do
             x:= 10^(d-1)*j + y;
             if isprime(x) then return x fi;
      od od od;
    end proc:
    f(3):= 3:
    map(f, [2,3,seq(seq(3*i+j,j=1..2),i=1..30)]); # Robert Israel, Jan 18 2024
  • PARI
    A067523(n)=if(n<3,n+1,A067180(n*3\/2-1)) \\ M. F. Hasler, Nov 04 2018

Formula

a(n) = min(prime(i): A007605(i) = A133223(i)). - R. J. Mathar, Nov 06 2018

Extensions

More terms from Vladeta Jovovic, Feb 18 2002
Edited by Ray Chandler, Apr 24 2007