A067523 The smallest prime with a possible given digit sum.
2, 3, 13, 5, 7, 17, 19, 29, 67, 59, 79, 89, 199, 389, 499, 599, 997, 1889, 1999, 2999, 4999, 6899, 17989, 8999, 29989, 39989, 49999, 59999, 79999, 98999, 199999, 389999, 598999, 599999, 799999, 989999, 2998999, 2999999, 4999999, 6999899, 8989999
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..667
Programs
-
Maple
g:= proc(s, d) # integers of <=d digits with sum s local j; if s > 9*d then return [] fi; if d = 1 then return [s] fi; [seq(op(map(t -> j*10^(d-1)+ t, procname(s-j, d-1))), j=0..9)]; end proc: f:= proc(n) local d, j, x, y; if n mod 3 = 0 then return 0 fi; for d from ceil(n/9) do if d = 1 then if isprime(n) and n < 10 then return n else next fi fi; for j from 1 to 9 do for y in g(n-j, d-1) do x:= 10^(d-1)*j + y; if isprime(x) then return x fi; od od od; end proc: f(3):= 3: map(f, [2,3,seq(seq(3*i+j,j=1..2),i=1..30)]); # Robert Israel, Jan 18 2024
-
PARI
A067523(n)=if(n<3,n+1,A067180(n*3\/2-1)) \\ M. F. Hasler, Nov 04 2018
Formula
Extensions
More terms from Vladeta Jovovic, Feb 18 2002
Edited by Ray Chandler, Apr 24 2007
Comments