cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A007605 Sum of digits of n-th prime.

Original entry on oeis.org

2, 3, 5, 7, 2, 4, 8, 10, 5, 11, 4, 10, 5, 7, 11, 8, 14, 7, 13, 8, 10, 16, 11, 17, 16, 2, 4, 8, 10, 5, 10, 5, 11, 13, 14, 7, 13, 10, 14, 11, 17, 10, 11, 13, 17, 19, 4, 7, 11, 13, 8, 14, 7, 8, 14, 11, 17, 10, 16, 11, 13, 14, 10, 5, 7, 11, 7, 13, 14, 16, 11, 17, 16, 13, 19, 14, 20, 19, 5
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a007605_list = map a007953 a000040_list -- Reinhard Zumkeller, Aug 04 2011
    
  • Magma
    [ &+Intseq(NthPrime(n), 10): n in [1..80] ]; // Klaus Brockhaus, Jun 13 2009
    
  • Maple
    map(t -> convert(convert(t,base,10),`+`), select(isprime, [2,(2*i+1 $ i=1..1000)])); # Robert Israel, Aug 16 2015
  • Mathematica
    Table[Apply[Plus, RealDigits[Prime[n]][[1]]], {n, 1, 100}]
    Plus@@ IntegerDigits[Prime[Range[100]]] (* Zak Seidov *)
  • PARI
    dsum(n)=my(s);while(n,s+=n%10;n\=10);s
    forprime(p=2,1e3,print1(dsum(p)", ")) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    a(n) = sumdigits(prime(n)); \\ Michel Marcus, Dec 20 2017
    
  • Python
    from sympy import prime
    def a(n): return sum(map(int, str(prime(n))))
    print([a(n) for n in range(1, 80)]) # Michael S. Branicky, Feb 03 2021

Formula

a(n) = A007953(A000040(n)) = A007953(prime(n)).

A067180 Smallest prime with digit sum n, or 0 if no such prime exists.

Original entry on oeis.org

0, 2, 3, 13, 5, 0, 7, 17, 0, 19, 29, 0, 67, 59, 0, 79, 89, 0, 199, 389, 0, 499, 599, 0, 997, 1889, 0, 1999, 2999, 0, 4999, 6899, 0, 17989, 8999, 0, 29989, 39989, 0, 49999, 59999, 0, 79999, 98999, 0, 199999, 389999, 0, 598999, 599999, 0, 799999, 989999, 0, 2998999, 2999999, 0, 4999999
Offset: 1

Views

Author

Amarnath Murthy, Jan 09 2002

Keywords

Examples

			a(68) = 59999999 because 59999999 is the smallest prime with digit sum = 68;
a(100) = 298999999999 because 298999999999 is the smallest prime with digit sum = 100.
		

Crossrefs

Cf. A054750.
Removal of the 0 terms from this sequence leaves A067523.

Programs

  • Maple
    g:= proc(s,d) # integers of <=d digits with sum s
      if s > 9*d then return [] fi;
      if d = 1 then return [s] fi;
      [seq(op(map(t -> j*10^(d-1)+ t, g(s-j,d-1))),j=0..9)];
    end proc:
    f:= proc(n) local d, j,x,y;
      if n mod 3 = 0 then return 0 fi;
      for d from ceil(n/9) do
        if d = 1 then
          if isprime(n) and n < 10 then return n
          else next
          fi
        fi;
        for j from 1 to 9 do
          for y in g(n-j,d-1) do
            x:= 10^(d-1)*j + y;
            if isprime(x) then return x fi;
      od od od;
    end proc:
    f(1):= 0: f(3):= 3:
    map(f, [$1..100]); # Robert Israel, Dec 13 2020
  • Mathematica
    a = Table[0, {100}]; Do[b = Apply[ Plus, IntegerDigits[ Prime[n]]]; If[b < 101 && a[[b]] == 0, a[[b]] = Prime[n]], {n, 1, 10^7} ]; a
    f[n_] :=  If[n > 5 && Mod[n, 3] == 0, 0, Block[{k = 1, lmt, lst = {}, ip = IntegerPartitions[n, Round[1 + n/9], {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}]}, lmt = 1 + Length@ ip; While[k < lmt, AppendTo[lst, Select[ FromDigits@# & /@ Permutations@ ip[[k]], PrimeQ[#] &]]; k++]; Min@ Flatten@ lst]]; f[1] = 0; f[4] = 13; Array[f, 70] (* Robert G. Wilson v, Sep 28 2014 *)
  • PARI
    A067180(n)={if(n<2, 0, n<4, n, n%3, my(d=divrem(n,9)); forprime(p=d[2]*10^d[1]-1,,sumdigits(p)==n&&return(p)))} \\ M. F. Hasler, Nov 04 2018

Formula

a(3k) = 0 for k > 1.
a(3k-2) = A067523(2k-1), a(3k-1) = A067523(2k), for all k > 1. - M. F. Hasler, Nov 04 2018

Extensions

Edited and extended by Robert G. Wilson v, Mar 01 2002
Edited by Ray Chandler, Apr 24 2007

A133223 Sum of digits of primes (A007605), sorted and with duplicates removed.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 10, 11, 13, 14, 16, 17, 19, 20, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 40, 41, 43, 44, 46, 47, 49, 50, 52, 53, 55, 56, 58, 59, 61, 62, 64, 65, 67, 68, 70, 71, 73, 74, 76, 77, 79, 80, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 100, 101, 103
Offset: 1

Views

Author

Lekraj Beedassy, Dec 19 2007

Keywords

Comments

Presumably this is 3 together with numbers greater than 1 and not divisible by 3 (see A001651). - Charles R Greathouse IV, Jul 17 2013. (This is not a theorem because we do not know if, given s > 3 and not a multiple of 3, there is always a prime with digit-sum s. Cf. A067180, A067523. - N. J. A. Sloane, Nov 02 2018)
From Chai Wah Wu, Nov 04 2018: (Start)
Conjecture: for s > 10 and not a multiple of 3, there exists a prime with digit-sum s consisting only of the digits 2 and 3 (cf. A137269). This conjecture has been verified for s <= 2995.
Conjecture: for s > 18 and not a multiple of 3, there exists a prime with digit-sum s consisting only of the digits 3 and 4. This conjecture has been verified for s <= 1345.
Conjecture: for s > 90 and not a multiple of 3, there exists a prime with digit-sum s consisting only of the digits 8 and 9. This conjecture has been verified for s <= 8995.
Conjecture: for 0 < a < b < 10, gcd(a, b) = 1 and ab not a multiple of 10, if s > 90 and s is not a multiple of 3, then there exists a prime with digit-sum s consisting only of the digits a and b. (End)

Crossrefs

Extensions

Corrected by Jeremy Gardiner, Feb 09 2014

A234429 Numbers which are the digital sum of the square of some prime.

Original entry on oeis.org

4, 7, 9, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79, 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127, 130, 133, 136, 139, 142, 145, 148, 151, 154, 157, 160, 163, 166, 169, 172, 175, 178
Offset: 1

Views

Author

Keywords

Comments

A123157 sorted and duplicates removed.

Crossrefs

Programs

  • PARI
    terms(nn) = {v = []; forprime (p = 1, nn, v = concat(v, sumdigits(p^2));); vecsort(v,,8);} \\ Michel Marcus, Jan 08 2014

Formula

From Robert G. Wilson v, Sep 28 2014: (Start)
Except for 3, all primes are congruent to +-1 (mod 3). Therefore, (3n +- 1)^2 = 9n^2 +- 6n + 1 which is congruent to 1 (mod 3).
4: 2, 11, 101, ... (A062397);
7: 5, 149, 1049, ... (A226803);
9: only 3;
10: 19, 71, 179, 251, 449, 20249, 24499, 100549, ... (A226802);
13: 7, 29, 47, 61, 79, 151, 349, 389, 461, 601, 1051, 1249, 1429, ... (A165492);
16: 13, 23, 31, 41, 59, 103, 131, 139, 211, 229, 239, 347, 401, ... (A165459);
19: 17, 37, 53, 73, 89, 107, 109, 127, 181, 199, 269, 271, 379, ... (A165493);
22: 43, 97, 191, 227, 241, 317, 331, 353, 421, 439, 479, 569, 619, 641, ...;
25: 67, 113, 157, 193, 257, 283, 311, 337, 373, 409, 419, 463, ... (A229058);
28: 163, 197, 233, 307, 359, 397, 431, 467, 487, 523, 541, 577, 593, 631, ...;
31: 83, 137, 173, 223, 263, 277, 281, 367, 443, 457, 547, 587, ... (A165502);
34: 167, 293, 383, 563, 607, 617, 733, 787, 823, 859, 877, 941, 967, 977, ...;
37: 433, 613, 683, 773, 827, 863, 1063, 1117, 1187, 1223, 1567, ... (A165503);
40: 313, 947, 983, 1303, 1483, 1609, 1663, 1933, 1973, 1987, 2063, 2113, ...;
43: 887, 1697, 1723, 1867, 1913, 2083, 2137, 2417, 2543, 2633, ... (A165504);
46: 883, 937, 1367, 1637, 2213, 2447, 2683, 2791, 2917, 3313, 3583, 3833, ...;
49: 1667, 2383, 2437, 2617, 2963, 4219, 4457, 5087, 5281, 6113, 6163, ...;
... Also see A229058. (End)
Conjectures from Chai Wah Wu, Apr 16 2025: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 5.
G.f.: x*(2*x^4 - x^3 - x^2 - x + 4)/(x - 1)^2. (End)

Extensions

a(36) from Michel Marcus, Jan 08 2014
a(37)-a(54) from Robert G. Wilson v, Sep 28 2014
More terms from Giovanni Resta, Aug 15 2019
Showing 1-4 of 4 results.