cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067553 Sum of products of terms in all partitions of n into odd parts.

Original entry on oeis.org

1, 1, 1, 4, 4, 9, 18, 25, 40, 76, 122, 178, 321, 472, 734, 1303, 1874, 2852, 4782, 6984, 10808, 17552, 25461, 38512, 61586, 90894, 135437, 213260, 312180, 463340, 728806, 1057468, 1562810, 2422394, 3511962, 5215671, 7985196, 11550542, 17022228, 25924746, 37638033
Offset: 0

Views

Author

Naohiro Nomoto, Jan 29 2002

Keywords

Comments

a(0) = 1 as the empty product equals 1. [Joerg Arndt, Oct 06 2012]

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1) +`if`(i>n or irem(i, 2)=0, 0, i*b(n-i, i))))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Sep 07 2014
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n || Mod[i, 2] == 0, 0, i*b[n-i, i]]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Apr 02 2015, after Alois P. Heinz *)
    nmax = 40; CoefficientList[Series[Product[1/(1-(2*k-1)*x^(2*k-1)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 15 2015 *)
  • Maxima
    g(n):= if n=0 then 1 else if oddp(n)=true  then n else 0;
    P(m,n):=if n=m then g(n) else sum(g(k)*P(k,n-k),k,m,n/2)+g(n);
    a(n):=P(1,n);
    makelist(a(n),n,0,27); /* Vladimir Kruchinin, Sep 06 2014 */
  • PARI
    N=66; q='q+O('q^N);
    gf= 1/ prod(n=1,N, (1-(2*n-1)*q^(2*n-1)) );
    Vec(gf)
    /* Joerg Arndt, Oct 06 2012 */
    

Formula

G.f.: 1/(Product_{k>=0} (1-(2*k+1)*x^(2*k+1)) ). - Vladeta Jovovic, May 09 2003
From Vaclav Kotesovec, Dec 15 2015: (Start)
a(n) ~ c * 3^(n/3), where
c = 28.8343667894061364904068323836801301428320806272385991... if mod(n,3) = 0
c = 28.4762018725001067057188975211539643762050439184376103... if mod(n,3) = 1
c = 28.3618072960214990676207117911869616961300790076910101... if mod(n,3) = 2.
(End)

Extensions

Corrected a(0) from 0 to 1, Joerg Arndt, Oct 06 2012