A067567 Odd numbers with an odd number of partitions.
1, 3, 5, 7, 13, 17, 23, 29, 33, 35, 37, 39, 41, 43, 49, 51, 53, 61, 63, 67, 69, 71, 73, 77, 81, 83, 85, 87, 89, 91, 93, 95, 99, 105, 107, 111, 115, 119, 121, 123, 127, 139, 143, 145, 155, 157, 159, 161, 165, 169, 173, 177, 181, 183, 185, 189, 193, 195, 199
Offset: 1
Examples
7 is in the sequence because the number of partitions of 7 is equal to 15 and both 7 and 15 are odd numbers. - _Omar E. Pol_, Mar 18 2012
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Maple
# We conjecture that the following program produces the sequence with(combinat): b := n -> add(k^3*numbpart(k)*numbpart(n-k), k = 1..n): c := n -> 2( b(n)/n - floor(b(n)/n) ): for n from 1 to 400 do if c(n) = 1 then print(n/2) end if end do; # Peter Bala, Jan 26 2017
-
Mathematica
Select[Range[1, 200, 2], OddQ[PartitionsP[#]] &] (* T. D. Noe, Mar 18 2012 *)
-
PARI
isok(n) = (n % 2) && (numbpart(n) % 2); \\ Michel Marcus, Jan 26 2017
Extensions
New name and more terms from Omar E. Pol, Mar 18 2012
Comments