cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A091874 Duplicate of A067633.

Original entry on oeis.org

1, 4, 13, 37, 117, 367, 3667, 36667, 366667, 3666667, 36666667, 366666667, 3666666667, 36666666667, 366666666667, 3666666666667, 36666666666667, 366666666666667, 3666666666666667, 36666666666666667, 366666666666666667
Offset: 1

Views

Author

Ray Chandler, Feb 07 2004

Keywords

Crossrefs

A014563 a(n+1) is the smallest number > a(n) such that the digits of a(n)^2 are all (with multiplicity) contained in the digits of a(n+1)^2, with a(0)=1.

Original entry on oeis.org

1, 4, 13, 14, 31, 36, 54, 96, 113, 311, 487, 854, 1036, 1277, 1646, 3214, 8351, 10456, 11414, 11536, 11563, 17606, 17813, 30287, 36786, 41544, 54927, 56547, 56586, 57363, 62469, 62634, 72813, 72897, 76944, 78345, 95061, 97944, 100963, 101944
Offset: 0

Views

Author

Marc Paulhus, Jan 29 2002

Keywords

Comments

Probably infinite. - David W. Wilson, Jan 29 2002

Examples

			13^2 = 169 and 14 is the next smallest number whose square (in this case 196) contains the digits 1,6,9.
		

Crossrefs

If "contained in" is replaced by "properly contained in" we get A065297.

Programs

  • Haskell
    import Data.List ((\\))
    a014563 n = a014563_list !! n
    a014563_list = 1 : f 1 (drop 2 a000290_list) where
       f x (q:qs) | null $ xs \\ (show q) = y : f y qs
                  | otherwise             = f x qs
                  where y = a000196 q; xs = show (x * x)
    -- Reinhard Zumkeller, Nov 22 2012
  • Mathematica
    snd[n_]:=Module[{k=n+1},While[!AllTrue[Select[Transpose[{DigitCount[n^2],
    DigitCount[k^2]}],#[[1]]>0&],#[[1]]<=#[[2]]&],k++];k]; NestList[ snd,1,40] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 21 2016 *)

A066825 a(1) = 1; set of digits of a(n)^2 is a subset of the set of digits of a(n+1)^2.

Original entry on oeis.org

1, 4, 13, 14, 31, 36, 54, 96, 113, 311, 487, 854, 1036, 1277, 1646, 3214, 3267, 3723, 4047, 4554, 4896, 5376, 10136, 13147, 13268, 16549, 20513, 21877, 25279, 26152, 27209, 28582, 31723, 32043, 32286, 33144, 35172, 35337, 35757, 35853
Offset: 1

Views

Author

David W. Wilson, Feb 05 2002

Keywords

Comments

Probably infinite and dense over Z+.

Crossrefs

Programs

  • Haskell
    import Data.List ((\\))
    a066825 n = a066825_list !! (n-1)
    a066825_list = 1 : f 1 (drop 2 a000290_list) where
       f x (q:qs) | all (`elem` show q) xs = y : f y qs
                  | otherwise              = f x qs
                  where y = a000196 q; xs = show (x * x)
    -- Reinhard Zumkeller, Nov 22 2012

A068175 a(1) = 1; for n>1, a(n) is the smallest square > a(n-1) obtained by inserting digits into a(n-1).

Original entry on oeis.org

1, 16, 169, 1369, 13689, 134689, 13446889, 1344468889, 134444688889, 13444446888889, 1344444468888889, 134444444688888889, 13444444446888888889, 1344444444468888888889, 134444444444688888888889
Offset: 1

Views

Author

Amarnath Murthy, Feb 25 2002

Keywords

Examples

			a(3) = 169; the smallest square obtained by inserting digits in it is 1369 hence a(4) = 1369.
		

Crossrefs

A067633 gives square roots.

Extensions

Corrected and extended by Ray Chandler, Oct 11 2003
Showing 1-4 of 4 results.