cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A097324 Numbers n such that A067655(n) is different from A049606(n).

Original entry on oeis.org

14, 18, 23, 25, 29, 35, 36, 40, 41, 42, 47, 51, 53, 58, 61, 62, 63, 69, 70, 71, 73, 80, 81, 84, 86, 88, 89, 90, 91, 95, 96, 99, 100, 102, 104, 106, 107, 109, 110, 113, 117, 118, 124, 127, 128, 130, 132, 135, 137, 139, 141, 146, 147, 150, 152, 155, 156, 157, 161
Offset: 1

Views

Author

Ralf Stephan, Aug 11 2004

Keywords

Comments

Or, denominator of 2^n/n! differs from denominator of sum(k=1,n,C(n-1,k-1)*2^k/k!).
We conjecture that the sequence is infinite, the sequence and its complement (cases where the two values are equal) equipartition N and the difference between consecutive members of this sequence never exceeds c=7.

A067654 Numerators of the coefficients in power series expansion of exp(2x/(1-x)).

Original entry on oeis.org

2, 4, 22, 38, 314, 1504, 16346, 24796, 331906, 2426404, 38445118, 163944598, 2993870654, 2647864592, 601353085846, 820420721222, 18874008233858, 20741357283932, 5782164084903302, 38314394323494974, 1059898973520975218
Offset: 1

Views

Author

Benoit Cloitre, Feb 03 2002

Keywords

References

  • K. Knopp, Theory and application of infinite series, Dover, p. 547.
  • O. Perron, Über das infinitäre Verhalten der Koeffizienten einer gewissen Potenzreihe, Archiv d. Math. u. Phys. (3), Vol. 22, pp. 329-340, 1914.

Crossrefs

Cf. A067655.

Formula

a(n) is the numerator of Sum_{i=1..n} binomial(n-1, i-1)*2^i/i!.

A129915 Irregular triangle read by rows: T(n, k) = f(n, A113474(n-1) - k), where f(n, k) = (n-1)!/2^k if (n-1)!/2^k is an integer, otherwise f(n, k) = 0.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 3, 6, 12, 24, 15, 30, 60, 120, 45, 90, 180, 360, 720, 315, 630, 1260, 2520, 5040, 315, 630, 1260, 2520, 5040, 10080, 20160, 40320, 2835, 5670, 11340, 22680, 45360, 90720, 181440, 362880, 14175, 28350, 56700, 113400, 226800, 453600
Offset: 1

Views

Author

Roger L. Bagula, Jun 05 2007

Keywords

Examples

			Irregular triangle begins as:
    1;
    1;
    1,   2;
    3,   6;
    3,   6,   12,   24;
   15,  30,   60,  120;
   45,  90,  180,  360,  720;
  315, 630, 1260, 2520, 5040;
  315, 630, 1260, 2520, 5040, 10080, 20160, 40320;
		

Crossrefs

Programs

  • Magma
    A113474:= func< n | n+1 - Multiplicity(Intseq(n, 2), 1) >;
    f:= func< n,k | IsIntegral(Factorial(n-1)/2^k) select Factorial(n-1)/2^k else 0 >;
    A129915:= func< n,k | f(n, A113474(n-1) - k) >;
    [A129915(n,k): k in [1..A113474(n-1)], n in [1..12]]; // G. C. Greubel, Sep 28 2024
    
  • Mathematica
    A113474[n_]:= n+1 - DigitCount[n, 2, 1];
    f[n_, k_]:= If[IntegerQ[(n-1)!/2^k], (n-1)!/2^k, 0];
    A129915[n_, k_]:= f[n, A113474[n-1]-k];
    Table[A129915[n,k], {n,15}, {k,A113474[n-1]}]//Flatten (* modified by G. C. Greubel, Sep 28 2024 *)
  • SageMath
    def A113474(n): return n+1 - sum((n+0).digits(2))
    def f(n,k): return factorial(n-1)/2^k if (factorial(n-1)/2^k).is_integer() else 0
    def A129915(n,k): return f(n, A113474(n-1) - k)
    flatten([[A129915(n,k) for k in range(1, A113474(n-1)+1)] for n in range(1,16)]) # G. C. Greubel, Sep 28 2024

Formula

T(n, k) = f(n, A113474(n-1) - k), where f(n, k) = (n-1)!/2^k if (n-1)!/2^k is an integer, otherwise f(n, k) = 0, for n >= 1, 1 <= k <= A113474(n-1).

Extensions

Edited by G. C. Greubel, Sep 28 2024
Showing 1-3 of 3 results.