A067724 a(n) = 5*n^2 + 10*n.
15, 40, 75, 120, 175, 240, 315, 400, 495, 600, 715, 840, 975, 1120, 1275, 1440, 1615, 1800, 1995, 2200, 2415, 2640, 2875, 3120, 3375, 3640, 3915, 4200, 4495, 4800, 5115, 5440, 5775, 6120, 6475, 6840, 7215, 7600, 7995, 8400, 8815, 9240, 9675
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[5*n*(n+2): n in [1..50]]; // Vincenzo Librandi, Jul 08 2012
-
Mathematica
Select[Range[10000], IntegerQ[ Sqrt[5 (5 + # )]] &] CoefficientList[Series[5 (3 - x)/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 08 2012 *) Table[5n^2+10n,{n,60}] (* or *) LinearRecurrence[{3,-3,1},{15,40,75},60] (* Harvey P. Dale, May 22 2018 *)
-
PARI
a(n)=5*n*(n+2) \\ Charles R Greathouse IV, Dec 07 2011
Formula
From Vincenzo Librandi, Jul 08 2012: (Start)
G.f.: 5*x*(3 - x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 3/20.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/20. (End)
E.g.f.: 5*exp(x)*x*(3 + x). - Stefano Spezia, Oct 01 2023
Comments