A067727 a(n) = 7*n^2 + 14*n.
21, 56, 105, 168, 245, 336, 441, 560, 693, 840, 1001, 1176, 1365, 1568, 1785, 2016, 2261, 2520, 2793, 3080, 3381, 3696, 4025, 4368, 4725, 5096, 5481, 5880, 6293, 6720, 7161, 7616, 8085, 8568, 9065, 9576, 10101, 10640, 11193, 11760, 12341, 12936
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([1..45], n-> 7*n*(n+2)); # G. C. Greubel, Sep 01 2019
-
Magma
[7*n*(n+2): n in [1..50]]; // Vincenzo Librandi, Jul 08 2012
-
Maple
seq(7*n*(n+2), n=1..45); # G. C. Greubel, Sep 01 2019
-
Mathematica
Select[ Range[15000], IntegerQ[ Sqrt[ 7(7 + # )]] & ] CoefficientList[Series[7*(3-x)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 08 2012 *) 7*(Range[2,45]^2 -1) (* G. C. Greubel, Sep 01 2019 *) LinearRecurrence[{3,-3,1},{21,56,105},50] (* Harvey P. Dale, Dec 07 2022 *)
-
PARI
a(n)= 7*n*(n+2) \\ Charles R Greathouse IV, Dec 07 2011
-
Sage
[7*n*(n+2) for n in (1..45)] # G. C. Greubel, Sep 01 2019
Formula
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 08 2012
G.f.: 7*x*(3-x)/(1-x)^3. - Vincenzo Librandi, Jul 08 2012
E.g.f.: 7*x*(3 + x)*exp(x). - G. C. Greubel, Sep 01 2019
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 3/28.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/28. (End)
Extensions
Edited by Charles R Greathouse IV, Jul 25 2010
Comments