cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A067725 a(n) = 3*n^2 + 6*n.

Original entry on oeis.org

0, 9, 24, 45, 72, 105, 144, 189, 240, 297, 360, 429, 504, 585, 672, 765, 864, 969, 1080, 1197, 1320, 1449, 1584, 1725, 1872, 2025, 2184, 2349, 2520, 2697, 2880, 3069, 3264, 3465, 3672, 3885, 4104, 4329, 4560, 4797, 5040, 5289, 5544, 5805, 6072, 6345, 6624
Offset: 0

Views

Author

Robert G. Wilson v, Feb 05 2002

Keywords

Comments

Numbers h such that 3*(3 + h) is a perfect square. - Alexander D. Healy, Tj Tullo, Avery Pickford, Sep 20 2004
Equivalently, numbers k such that k/3+1 is a square. - Bruno Berselli, Apr 10 2018

Crossrefs

Cf. A005563.
Cf. numbers k such that k*(k + m) is a perfect square: A028560 (k=9), A067728 (k=8), A067727 (k=7), A067726 (k=6), A067724 (k=5), A028347 (k=4), A054000 (k=2), A005563 (k=1).

Programs

Formula

a(n) = 3*A005563(n). - Zerinvary Lajos, Mar 06 2007
a(n) = a(n-1) + 6*n + 3, with n>0, a(0)=0. - Vincenzo Librandi, Aug 08 2010
From Colin Barker, Apr 11 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 3*x*(3-x)/(1-x)^3. (End)
E.g.f.: 3*x*(x + 3)*exp(x). - G. C. Greubel, Jul 20 2017
From Amiram Eldar, Feb 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/12. (End)

Extensions

Edited by N. J. A. Sloane, Sep 14 2008 at the suggestion of R. J. Mathar

A067728 a(n) = 2*n^2 + 8*n.

Original entry on oeis.org

10, 24, 42, 64, 90, 120, 154, 192, 234, 280, 330, 384, 442, 504, 570, 640, 714, 792, 874, 960, 1050, 1144, 1242, 1344, 1450, 1560, 1674, 1792, 1914, 2040, 2170, 2304, 2442, 2584, 2730, 2880, 3034, 3192, 3354, 3520, 3690, 3864, 4042, 4224, 4410, 4600, 4794
Offset: 1

Views

Author

Robert G. Wilson v, Feb 05 2002

Keywords

Comments

Positive numbers k such that 8*(8 + k) is a perfect square.

Crossrefs

Programs

  • Magma
    [2*n*(n+4): n in [1..50]] // Vincenzo Librandi, Jul 08 2012
    
  • Mathematica
    Select[ Range[10000], IntegerQ[ Sqrt[ 8(8 + # )]] & ]
    CoefficientList[Series[2*(5-3*x)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 08 2012 *)
  • PARI
    a(n)=2*n*(n+4) \\ Charles R Greathouse IV, Dec 07 2011
    
  • Python
    def a(n): return (2*n + 8)*n
    print([a(n) for n in range(1, 48)]) # Michael S. Branicky, Oct 24 2021

Formula

a(n+1) = 2*n*n + 12*n + 10. - Frank Ellermann
a(n) = Sum_{k=0..n} Sum_{j=4..n} (j - k), n >= 4. - Zerinvary Lajos, May 11 2007
From Vincenzo Librandi, Jul 08 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 2*x*(5-3*x)/(1-x)^3. (End)
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 25/96.
Sum_{n>=1} (-1)^(n+1)/a(n) = 7/96. (End)
E.g.f.: 2*exp(x)*x*(5 + x). - Stefano Spezia, Oct 01 2023

A186029 a(n) = n*(7*n+3)/2.

Original entry on oeis.org

0, 5, 17, 36, 62, 95, 135, 182, 236, 297, 365, 440, 522, 611, 707, 810, 920, 1037, 1161, 1292, 1430, 1575, 1727, 1886, 2052, 2225, 2405, 2592, 2786, 2987, 3195, 3410, 3632, 3861, 4097, 4340, 4590, 4847, 5111, 5382, 5660, 5945, 6237, 6536, 6842, 7155, 7475
Offset: 0

Views

Author

Bruno Berselli, Feb 11 2011

Keywords

Comments

This sequence is related to A050409 by A050409(n) = n*a(n) - Sum_{i=0..n-1} a(i).

Examples

			From _Ilya Gutkovskiy_, Mar 31 2016: (Start)
.                                           o o o o o o o o o o o o
.                                           o                     o
.         o o o o o o   o  o o o o o o  o   o  o  o o o o o o  o  o
.         o         o   o  o         o  o   o  o  o         o  o  o
. o   o   o  o   o  o   o  o  o   o  o  o   o  o  o  o   o  o  o  o
. o o o   o  o o o  o   o  o  o o o  o  o   o  o  o  o o o  o  o  o
.                       o               o   o  o               o  o
.                       o o o o o o o o o   o  o o o o o o o o o  o
.
.  n=1        n=2              n=3                    n=4
(End)
		

Crossrefs

Cf. numbers of the form n*(d*n+10-d)/2 indexed in A140090.
Cf. A017041 (first differences).

Programs

Formula

G.f.: x*(5+2*x)/(1-x)^3.
a(n) - a(-n) = A008585(n).
a(n) + a(-n) = A033582(n).
n*a(n+1) - (n+1)*a(n) = A024966(n). - Bruno Berselli, May 30 2012
n*a(n+2) - (n+2)*a(n) = A067727(n) for n>0. - Bruno Berselli, May 30 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2, a(0)=0, a(1)=5, a(2)=17. - Philippe Deléham, Mar 26 2013
a(n) = A174738(7*n+4). - Philippe Deléham, Mar 26 2013
E.g.f.: (1/2)*(7*x^2 + 10*x)*exp(x). - G. C. Greubel, Jul 17 2017

A067707 a(n) = 3*n^2 + 12*n.

Original entry on oeis.org

15, 36, 63, 96, 135, 180, 231, 288, 351, 420, 495, 576, 663, 756, 855, 960, 1071, 1188, 1311, 1440, 1575, 1716, 1863, 2016, 2175, 2340, 2511, 2688, 2871, 3060, 3255, 3456, 3663, 3876, 4095, 4320, 4551, 4788, 5031, 5280, 5535, 5796, 6063, 6336, 6615, 6900
Offset: 1

Views

Author

Robert G. Wilson v, Feb 05 2002

Keywords

Comments

Numbers k such that 12*(12 + k) is a perfect square.
a(n) is the second Zagreb index of the gear graph g[n]. The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph. The gear graph g[n] is defined as a wheel graph with n+1 vertices with a vertex added between each pair of adjacent vertices of the outer cycle. - Emeric Deutsch, Nov 09 2016

Crossrefs

Cf. A067724 (5), A067725 (3), A067726 (6), A067727 (7), A067728, A067705 (11).

Programs

  • Magma
    [3*n^2 + 12*n: n in [1..50]]; // Vincenzo Librandi, Jul 07 2012
  • Mathematica
    Select[ Range[10000], IntegerQ[ Sqrt[ 12(12 + # )]] & ]
    CoefficientList[Series[3*(5-3*x)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 07 2012 *)
  • PARI
    a(n)=3*n*(n+4) \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

G.f.: 3*x*(5 - 3*x)/(1 - x)^3. - Vincenzo Librandi, Jul 07 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 07 2012
E.g.f.: 3*x*(x + 5)*exp(x). - G. C. Greubel, Jul 20 2017
From Amiram Eldar, Feb 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 25/144.
Sum_{n>=1} (-1)^(n+1)/a(n) = 7/144. (End)

A067724 a(n) = 5*n^2 + 10*n.

Original entry on oeis.org

15, 40, 75, 120, 175, 240, 315, 400, 495, 600, 715, 840, 975, 1120, 1275, 1440, 1615, 1800, 1995, 2200, 2415, 2640, 2875, 3120, 3375, 3640, 3915, 4200, 4495, 4800, 5115, 5440, 5775, 6120, 6475, 6840, 7215, 7600, 7995, 8400, 8815, 9240, 9675
Offset: 1

Views

Author

Robert G. Wilson v, Feb 05 2002

Keywords

Comments

Positive numbers m such that 5*(5 + m) is a perfect square.

Crossrefs

Cf. numbers k such that k*(k + m) is a perfect square: A028560 (k=9), A067728 (k=8), A067727 (k=7), A067726 (k=6), A028347 (k=4), A067725 (k=3), A054000 (k=2), A067998 (k=1).
Cf. A055998.

Programs

  • Magma
    [5*n*(n+2): n in [1..50]]; // Vincenzo Librandi, Jul 08 2012
  • Mathematica
    Select[Range[10000], IntegerQ[ Sqrt[5 (5 + # )]] &]
    CoefficientList[Series[5 (3 - x)/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 08 2012 *)
    Table[5n^2+10n,{n,60}] (* or *) LinearRecurrence[{3,-3,1},{15,40,75},60] (* Harvey P. Dale, May 22 2018 *)
  • PARI
    a(n)=5*n*(n+2) \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

From Vincenzo Librandi, Jul 08 2012: (Start)
G.f.: 5*x*(3 - x)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
a(n) = A055998(3*n) + A055998(n). - Bruno Berselli, Sep 23 2016
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 3/20.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/20. (End)
E.g.f.: 5*exp(x)*x*(3 + x). - Stefano Spezia, Oct 01 2023

A067726 a(n) = 6*n^2 + 12*n.

Original entry on oeis.org

18, 48, 90, 144, 210, 288, 378, 480, 594, 720, 858, 1008, 1170, 1344, 1530, 1728, 1938, 2160, 2394, 2640, 2898, 3168, 3450, 3744, 4050, 4368, 4698, 5040, 5394, 5760, 6138, 6528, 6930, 7344, 7770, 8208, 8658, 9120, 9594, 10080, 10578, 11088, 11610
Offset: 1

Views

Author

Robert G. Wilson v, Feb 05 2002

Keywords

Comments

Positive numbers k such that 6*(6 + k) is a perfect square.

Crossrefs

Cf. numbers k such that k*(k + m) is a perfect square: A028560 (k=9), A067728 (k=8), A067727 (k=7), A067724 (k=5), A028347 (k=4), A067725 (k=3), A054000 (k=2), A005563 (k=1).

Programs

Formula

G.f.: 6*x*(3 - x)/(1 - x)^3. - Vincenzo Librandi, Jul 08 2012
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 08 2012
E.g.f.: 6*x*(3 + x)*exp(x). - G. C. Greubel, Sep 01 2019
From Amiram Eldar, Feb 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/24. (End)
a(n) = A003215(2*n) - A003154(n). - Leo Tavares, May 20 2023
a(n) = 6*A005563(n). - Hugo Pfoertner, May 24 2023

A067705 a(n) = 11*n^2 + 22*n.

Original entry on oeis.org

33, 88, 165, 264, 385, 528, 693, 880, 1089, 1320, 1573, 1848, 2145, 2464, 2805, 3168, 3553, 3960, 4389, 4840, 5313, 5808, 6325, 6864, 7425, 8008, 8613, 9240, 9889, 10560, 11253, 11968, 12705, 13464, 14245, 15048, 15873, 16720, 17589, 18480, 19393, 20328, 21285
Offset: 1

Views

Author

Robert G. Wilson v, Feb 05 2002

Keywords

Comments

Numbers k such that 11*(11 + k) is a perfect square.

Crossrefs

Cf. A067724, A067725, A067726, A067727, A067728 (if 11 is replaced by 3, 5, 6, 7, 8 respectively), A067707 (12).
Cf. A005563.

Programs

  • Magma
    [11*n*(n+2): n in [1..50]]; // Vincenzo Librandi, Jul 07 2012
  • Mathematica
    Select[ Range[20000], IntegerQ[ Sqrt[ 11(11 + # )]] & ]
    CoefficientList[Series[11 (3 - x)/(1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 07 2012 *)
  • PARI
    a(n)=11*n*(n+2) \\ Charles R Greathouse IV, Dec 07 2011
    

Formula

From Vincenzo Librandi, Jul 07 2012: (Start)
G.f.: 11*x*(3-x)/(1-x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Elmo R. Oliveira, Jan 28 2025: (Start)
E.g.f.: 11*exp(x)*x*(3 + x).
a(n) = 11*A005563(n). (End)

A302576 Numbers k such that k/10 + 1 is a square.

Original entry on oeis.org

-10, 0, 30, 80, 150, 240, 350, 480, 630, 800, 990, 1200, 1430, 1680, 1950, 2240, 2550, 2880, 3230, 3600, 3990, 4400, 4830, 5280, 5750, 6240, 6750, 7280, 7830, 8400, 8990, 9600, 10230, 10880, 11550, 12240, 12950, 13680, 14430, 15200, 15990, 16800, 17630, 18480, 19350, 20240
Offset: 1

Views

Author

Bruno Berselli, Apr 10 2018

Keywords

Comments

Equivalently, numbers k such that (k + 10)*10 is a square.
The positive terms belong to the fourth column of the array in A185781.

Crossrefs

After -10, subsequence of A174133 because a(n) = ((n-1)^2-1)*(3^2+1).
Similar lists of k for which k/j + 1 is a square: A067998 (j=1), A054000 (j=2), A067725 (j=3), A134582 (j=4), A067724 (j=5), A067726 (j=6), A067727 (j=7), second bisection of A067728 (j=8), A147651 (j=9), this sequence (j=10), A067705 (j=11), second bisection of A067707 (j=12).

Programs

  • GAP
    List([1..50], n -> 10*n*(n-2));
    
  • Julia
    [10*n*(n-2) for n in 1:50] |> println
    
  • Magma
    [10*n*(n-2): n in [1..50]];
  • Mathematica
    Table[10 n (n - 2), {n, 1, 50}]
  • Maxima
    makelist(10*n*(n-2), n, 1, 50);
    
  • PARI
    vector(50, n, nn; 10*n*(n-2))
    
  • Python
    [10*n*(n-2) for n in range(1, 50)]
    
  • Sage
    [10*n*(n-2) for n in (1..50)]
    

Formula

O.g.f.: -10*x*(1 - 3*x)/(1 - x)^3.
E.g.f.: -10*x*(1 - x)*exp(x).
a(n) = a(2-n).
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = 10*n*(n - 2) = 10*A067998(n).
a(n) = A033583(n-1) - 10. - Altug Alkan, Apr 10 2018
Showing 1-8 of 8 results.