A067725 a(n) = 3*n^2 + 6*n.
0, 9, 24, 45, 72, 105, 144, 189, 240, 297, 360, 429, 504, 585, 672, 765, 864, 969, 1080, 1197, 1320, 1449, 1584, 1725, 1872, 2025, 2184, 2349, 2520, 2697, 2880, 3069, 3264, 3465, 3672, 3885, 4104, 4329, 4560, 4797, 5040, 5289, 5544, 5805, 6072, 6345, 6624
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
GAP
List([0..50], n-> 3*n*(n+2)); # G. C. Greubel, Sep 01 2019
-
Magma
[3*n*(n+2): n in [0..50]]; // G. C. Greubel, Sep 01 2019
-
Maple
seq(3*n*(n+2), n=0..50); # G. C. Greubel, Sep 01 2019
-
Mathematica
Select[ Range[10000], IntegerQ[ Sqrt[ 3(3 + # )]] & ] 3*(Range[50]^2 -1) (* G. C. Greubel, Sep 01 2019 *)
-
PARI
a(n)=3*n*(n+2) \\ Charles R Greathouse IV, Dec 07 2011
-
Sage
[3*n*(n+2) for n in (0..50)] # G. C. Greubel, Sep 01 2019
Formula
a(n) = 3*A005563(n). - Zerinvary Lajos, Mar 06 2007
a(n) = a(n-1) + 6*n + 3, with n>0, a(0)=0. - Vincenzo Librandi, Aug 08 2010
From Colin Barker, Apr 11 2012: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 3*x*(3-x)/(1-x)^3. (End)
E.g.f.: 3*x*(x + 3)*exp(x). - G. C. Greubel, Jul 20 2017
From Amiram Eldar, Feb 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 1/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = 1/12. (End)
Extensions
Edited by N. J. A. Sloane, Sep 14 2008 at the suggestion of R. J. Mathar
Comments