A097658 Duplicate of A067725.
0, 9, 24, 45, 72, 105, 144, 189, 240, 297, 360, 429, 504, 585, 672, 765, 864, 969, 1080
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = 3*x + 8*x^2 + 15*x^3 + 24*x^4 + 35*x^5 + 48*x^6 + 63*x^7 + 80*x^8 + ...
a005563 n = n * (n + 2) a005563_list = zipWith (*) [0..] [2..] -- Reinhard Zumkeller, Dec 16 2012
[n*(n+2): n in [0..60]]; // G. C. Greubel, Mar 29 2024
Table[n^2 - 1, {n, 42}] (* Zerinvary Lajos, Mar 21 2007 *) ListCorrelate[{1, 2}, Range[-1, 50], {1, -1}, 0, Plus, Times] (* Harvey P. Dale, Aug 29 2015 *) Range[20]^2 - 1 (* Eric W. Weisstein, Aug 16 2017 *) Table[n (n + 2), {n, 20}] (* Eric W. Weisstein, Nov 21 2024 *) CoefficientList[Series[(-3 + x)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 21 2024 *) LinearRecurrence[{3, -3, 1}, {3, 8, 15}, 20] (* Eric W. Weisstein, Nov 21 2024 *)
makelist(n*(n+2), n, 0, 56); /* Martin Ettl, Oct 15 2012 */
a(n)=n*(n+2) \\ Charles R Greathouse IV, Dec 22 2011
concat(0, Vec(x*(3-x)/(1-x)^3 + O(x^90))) \\ Altug Alkan, Oct 22 2015
[n*(n+2) for n in range(61)] # G. C. Greubel, Mar 29 2024
For n=5, a(5)=48 and 37^2 + 48^2 + 59^2 + 70^2 + 81^2 = 59^2 + 60^2 + 61^2 + 62^2 + 63^2. - _Carmine Suriano_, Oct 16 2013
[ seq(2*n^2 - 2, n=1..60) ];
2 Range[50]^2 - 2 (* or *) LinearRecurrence[{3, -3, 1}, {0, 6, 16}, 50] (* Harvey P. Dale, Feb 03 2012 *) CoefficientList[Series[2 x (3 - x) / (1 - x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Apr 01 2015 *)
a(n)=2*n^2-2 \\ Charles R Greathouse IV, Sep 24 2015
[2*n*(n+4): n in [1..50]] // Vincenzo Librandi, Jul 08 2012
Select[ Range[10000], IntegerQ[ Sqrt[ 8(8 + # )]] & ] CoefficientList[Series[2*(5-3*x)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 08 2012 *)
a(n)=2*n*(n+4) \\ Charles R Greathouse IV, Dec 07 2011
def a(n): return (2*n + 8)*n print([a(n) for n in range(1, 48)]) # Michael S. Branicky, Oct 24 2021
[n*(3*n+4) : n in [0..80]]; // Wesley Ivan Hurt, Apr 21 2016
A140676:=n->n*(3*n+4): seq(A140676(n), n=0..100); # Wesley Ivan Hurt, Apr 21 2016
Table[n (3 n + 4), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 7, 20}, 50] (* Harvey P. Dale, May 04 2013 *)
a(n)=n*(3*n+4) \\ Charles R Greathouse IV, Oct 07 2015
A140681:=n->3*n*(n+6); seq(A140681(n), n=0..100); # Wesley Ivan Hurt, Dec 10 2013
Table[3n(n+6), {n,0,100}] (* Wesley Ivan Hurt, Dec 10 2013 *) LinearRecurrence[{3,-3,1},{0,21,48},50] (* Harvey P. Dale, May 03 2023 *)
a(n)=3*n*(n+6) \\ Charles R Greathouse IV, Jun 17 2017
[3*n^2 + 12*n: n in [1..50]]; // Vincenzo Librandi, Jul 07 2012
Select[ Range[10000], IntegerQ[ Sqrt[ 12(12 + # )]] & ] CoefficientList[Series[3*(5-3*x)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 07 2012 *)
a(n)=3*n*(n+4) \\ Charles R Greathouse IV, Dec 07 2011
List([1..45], n-> 7*n*(n+2)); # G. C. Greubel, Sep 01 2019
[7*n*(n+2): n in [1..50]]; // Vincenzo Librandi, Jul 08 2012
seq(7*n*(n+2), n=1..45); # G. C. Greubel, Sep 01 2019
Select[ Range[15000], IntegerQ[ Sqrt[ 7(7 + # )]] & ] CoefficientList[Series[7*(3-x)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, Jul 08 2012 *) 7*(Range[2,45]^2 -1) (* G. C. Greubel, Sep 01 2019 *) LinearRecurrence[{3,-3,1},{21,56,105},50] (* Harvey P. Dale, Dec 07 2022 *)
a(n)= 7*n*(n+2) \\ Charles R Greathouse IV, Dec 07 2011
[7*n*(n+2) for n in (1..45)] # G. C. Greubel, Sep 01 2019
a(1) = 6*1 + 0 + 5 = 11; a(2) = 6*2 + 11 + 5 = 28; a(3) = 6*3 + 28 + 5 = 51. - _Vincenzo Librandi_, Aug 03 2010
Table[n(3n+8),{n,0,45}] (* Harvey P. Dale, Feb 20 2011 *)
a(n)=n*(3*n+8) \\ Charles R Greathouse IV, Jun 17 2017
[5*n*(n+2): n in [1..50]]; // Vincenzo Librandi, Jul 08 2012
Select[Range[10000], IntegerQ[ Sqrt[5 (5 + # )]] &] CoefficientList[Series[5 (3 - x)/(1 - x)^3, {x, 0, 40}], x] (* Vincenzo Librandi, Jul 08 2012 *) Table[5n^2+10n,{n,60}] (* or *) LinearRecurrence[{3,-3,1},{15,40,75},60] (* Harvey P. Dale, May 22 2018 *)
a(n)=5*n*(n+2) \\ Charles R Greathouse IV, Dec 07 2011
Comments
= S(S+1) = n(n+2)/4, i.e., one quarter of a(n) with n = 2S. This plays an important role in the theory of magnetism and magnetic resonance. - Stanislav Sykora, May 26 2012