cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A140676 a(n) = n*(3*n + 4).

Original entry on oeis.org

0, 7, 20, 39, 64, 95, 132, 175, 224, 279, 340, 407, 480, 559, 644, 735, 832, 935, 1044, 1159, 1280, 1407, 1540, 1679, 1824, 1975, 2132, 2295, 2464, 2639, 2820, 3007, 3200, 3399, 3604, 3815, 4032, 4255, 4484, 4719, 4960, 5207, 5460, 5719, 5984, 6255, 6532, 6815
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Comments

The number of peers of a cell of an n^2 X n^2 sudoku is a(n-1). - Neven Sajko, Apr 20 2016
First differences are in A016921. - Wesley Ivan Hurt, Apr 21 2016

Crossrefs

Programs

Formula

a(n) = 3*n^2 + 4*n.
a(n) = 6*n + a(n-1) + 1 for n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
O.g.f.: x*(7 - x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>2. - Harvey P. Dale, May 04 2013
E.g.f.: x*(7 + 3*x)*exp(x). - Ilya Gutkovskiy, Apr 20 2016
a(n) = A000567(n+1) - 1. - Neven Sajko, Apr 20 2016
From Amiram Eldar, Feb 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 15/16 - Pi/(8*sqrt(3)) - 3*log(3)/8.
Sum_{n>=1} (-1)^(n+1)/a(n) = 9/16 - Pi/(4*sqrt(3)). (End)

A140681 a(n) = 3*n*(n+6).

Original entry on oeis.org

0, 21, 48, 81, 120, 165, 216, 273, 336, 405, 480, 561, 648, 741, 840, 945, 1056, 1173, 1296, 1425, 1560, 1701, 1848, 2001, 2160, 2325, 2496, 2673, 2856, 3045, 3240, 3441, 3648, 3861, 4080, 4305, 4536, 4773, 5016, 5265, 5520, 5781
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

Programs

Formula

a(n) = A028560(n)*3 = 3*n^2 + 18*n = n*(3*n+18).
a(n) = 6*n + a(n-1) + 15 with n>0, a(0)=0. - Vincenzo Librandi, Aug 03 2010
from G. C. Greubel, Jul 20 2017: (Start)
G.f.: 3*x*(7 - 5*x)/(1-x)^3.
E.g.f.: 3*x*(x+7)*exp(x). (End)
From Amiram Eldar, Feb 26 2022: (Start)
Sum_{n>=1} 1/a(n) = 49/360.
Sum_{n>=1} (-1)^(n+1)/a(n) = 37/1080. (End)

A140678 a(n) = n*(3*n + 10).

Original entry on oeis.org

0, 13, 32, 57, 88, 125, 168, 217, 272, 333, 400, 473, 552, 637, 728, 825, 928, 1037, 1152, 1273, 1400, 1533, 1672, 1817, 1968, 2125, 2288, 2457, 2632, 2813, 3000, 3193, 3392, 3597, 3808, 4025, 4248, 4477, 4712, 4953, 5200, 5453, 5712
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n (3 n + 10), {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 13, 32}, 50] (* Harvey P. Dale, Jun 05 2012 *)
  • PARI
    a(n)=n*(3*n+10) \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = 3*n^2 + 10*n.
a(n) = 6*n + a(n-1) + 7, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
G.f.: x*(13 - 7*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=0, a(1)=13, a(2)=32. - Harvey P. Dale, Jun 05 2012
E.g.f.: (3*x^2 + 13*x)*exp(x). - G. C. Greubel, Jul 20 2017

A140679 a(n) = n*(3*n+14).

Original entry on oeis.org

0, 17, 40, 69, 104, 145, 192, 245, 304, 369, 440, 517, 600, 689, 784, 885, 992, 1105, 1224, 1349, 1480, 1617, 1760, 1909, 2064, 2225, 2392, 2565, 2744, 2929, 3120, 3317, 3520, 3729, 3944, 4165, 4392, 4625, 4864, 5109, 5360, 5617, 5880, 6149, 6424, 6705, 6992
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Examples

			a(1)=6*1+0+11=17; a(2)=6*2+17+11=40; a(3)=6*3+40+11=69. See 2nd formula.
		

Crossrefs

Programs

Formula

a(n) = 3*n^2 + 14*n.
a(n) = a(n-1) + 6*n + 11, with a(0)=0. - Vincenzo Librandi, Aug 03 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(1)=0, a(2)=17, a(3)=40. - Harvey P. Dale, Apr 29 2011
E.g.f.: (3*x^2 + 17*x)*exp(x). - G. C. Greubel, Jul 20 2017

A140680 a(n) = n*(3*n+16).

Original entry on oeis.org

0, 19, 44, 75, 112, 155, 204, 259, 320, 387, 460, 539, 624, 715, 812, 915, 1024, 1139, 1260, 1387, 1520, 1659, 1804, 1955, 2112, 2275, 2444, 2619, 2800, 2987, 3180, 3379, 3584, 3795, 4012, 4235, 4464, 4699, 4940, 5187, 5440, 5699
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 3*n^2 + 16*n.
a(n) = 6*n + a(n-1) + 13 (with a(0)=0). - Vincenzo Librandi, Aug 03 2010
E.g.f.: (3*x^2 + 19*x)*exp(x). - G. C. Greubel, Jul 20 2017

A140689 a(n) = n*(3*n + 20).

Original entry on oeis.org

0, 23, 52, 87, 128, 175, 228, 287, 352, 423, 500, 583, 672, 767, 868, 975, 1088, 1207, 1332, 1463, 1600, 1743, 1892, 2047, 2208, 2375, 2548, 2727, 2912, 3103, 3300, 3503, 3712, 3927, 4148, 4375, 4608, 4847, 5092, 5343, 5600, 5863
Offset: 0

Views

Author

Omar E. Pol, May 22 2008

Keywords

Crossrefs

Programs

Formula

a(n) = 3*n^2 + 20*n.
a(n) = a(n-1) + 6*n + 17 (with a(0)=0). - Vincenzo Librandi, Dec 15 2010
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3), with a(0)=0, a(1)=23, a(2)=52. - Harvey P. Dale, Apr 29 2016
From G. C. Greubel, Jul 21 2017: (Start)
G.f.: x*(23 - 17*x)/(1 - x)^3.
E.g.f.: x*(3*x + 23)*exp(x). (End)

A156140 Accumulation of Stern's diatomic series: a(0)=-1, a(1)=0, and a(n+1) = (2e(n)+1)*a(n) - a(n-1) for n > 1, where e(n) is the highest power of 2 dividing n.

Original entry on oeis.org

-1, 0, 1, 3, 2, 7, 5, 8, 3, 13, 10, 17, 7, 18, 11, 15, 4, 21, 17, 30, 13, 35, 22, 31, 9, 32, 23, 37, 14, 33, 19, 24, 5, 31, 26, 47, 21, 58, 37, 53, 16, 59, 43, 70, 27, 65, 38, 49, 11, 50, 39, 67, 28, 73, 45, 62, 17, 57, 40, 63, 23, 52, 29, 35, 6, 43, 37, 68, 31, 87, 56, 81, 25, 94, 69
Offset: 0

Views

Author

Arie Werksma (Werksma(AT)Tiscali.nl), Feb 04 2009

Keywords

Crossrefs

From Yosu Yurramendi, Mar 09 2018: (Start)
a(2^m + 0) = A000027(m), m >= 0.
a(2^m + 1) = A002061(m+2), m >= 1.
a(2^m + 2) = A002522(m), m >= 2.
a(2^m + 3) = A033816(m-1), m >= 2.
a(2^m + 4) = A002061(m), m >= 2.
a(2^m + 5) = A141631(m), m >= 3.
a(2^m + 6) = A084849(m-1), m >= 3.
a(2^m + 7) = A056108(m-1), m >= 3.
a(2^m + 8) = A000290(m-1), m >= 3.
a(2^m + 9) = A185950(m-1), m >= 4.
a(2^m + 10) = A144390(m-1), m >= 4.
a(2^m + 12) = A014106(m-2), m >= 4.
a(2^m + 16) = A028387(m-3), m >= 4.
a(2^m + 18) = A250657(m-4), m >= 5.
a(2^m + 20) = A140677(m-3), m >= 5.
a(2^m + 32) = A028872(m-2), m >= 5.
a(2^m - 1) = A005563(m-1), m >= 0.
a(2^m - 2) = A028387(m-2), m >= 2.
a(2^m - 3) = A033537(m-2), m >= 2.
a(2^m - 4) = A008865(m-1), m >= 3.
a(2^m - 7) = A140678(m-3), m >= 3.
a(2^m - 8) = A014209(m-3), m >= 4.
a(2^m - 16) = A028875(m-2), m >= 5.
a(2^m - 32) = A108195(m-5), m >= 6.
(End)

Programs

  • Maple
    A156140 := proc(n)
        option remember ;
        if n <= 1 then
            n-1 ;
        else
            (2*A007814(n-1)+1)*procname(n-1)-procname(n-2) ;
        end if;
    end proc:
    seq(A156140(n),n=0..80) ; # R. J. Mathar, Mar 14 2009
  • Mathematica
    Fold[Append[#1, (2 IntegerExponent[#2, 2] + 1) #1[[-1]] - #1[[-2]] ] &, {-1, 0}, Range[73]] (* Michael De Vlieger, Mar 09 2018 *)
  • PARI
    first(n)=my(v=vector(n+1)); v[1]=-1; v[2]=0; for(k=1,n-1,v[k+2]=(2*valuation(k,2)+1)*v[k+1] - v[k]); v \\ Charles R Greathouse IV, Apr 05 2016
    
  • PARI
    fusc(n)=my(a=1, b=0); while(n>0, if(bitand(n, 1), b+=a, a+=b); n>>=1); b
    a(n)=my(m=1,s,t); if(n==0, return(-1)); while(n%2==0, s+=fusc(n>>=1)); while(n>1, t=logint(n,2); n-=2^t; s+=m*fusc(n)*(t^2+t+1); m*=-t); m*(n-1) + s \\ Charles R Greathouse IV, Dec 13 2016
    
  • R
    a <- c(0,1)
    maxlevel <- 6 # by choice
    for(m in 1:maxlevel) {
      a[2^(m+1)] <- m + 1
      for(k in 1:(2^m-1)) {
        r <- m - floor(log2(k)) - 1
        a[2^r*(2*k+1)] <- a[2^r*(2*k)] + a[2^r*(2*k+2)]
    }}
    a
    # Yosu Yurramendi, May 08 2018

Formula

Let b(n) = A002487(n), Stern's diatomic series.
a(n+1)*b(n) - a(n)*b(n+1) = 1 for n >= 0.
a(2n+1) = a(n) + a(n+1) + b(n) + b(n+1) for n >= 0.
a(2n) = a(n) + b(n) for n >= 0.
a(2^n + k) = -n*a(k) + (n^2 + n + 1)*b(k) for 0 <= k <= 2^n.
b(2^n + k) = -a(k) + (n + 1)*b(k) for 0 <= k <= 2^n.
a(2^m + k) = b(2^m+k)*m + b(k), m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Mar 09 2018
a(2^(m+1)+2^m+1) = 2*m+1, m >= 0. - Yosu Yurramendi, Mar 09 2018
From Yosu Yurramendi, May 08 2018: (Start)
a(2^m) = m, m >= 0.
a(2^r*(2*k+1)) = a(2^r*(2*k)) + a(2^r*(2*k+2)), r = m - floor(log_2(k)) - 1, m > 0, 1 <= k < 2^m.
(End)

A185878 Accumulation array of A185877, by antidiagonals.

Original entry on oeis.org

1, 4, 2, 11, 10, 3, 24, 28, 18, 4, 45, 60, 51, 28, 5, 76, 110, 108, 80, 40, 6, 119, 182, 195, 168, 115, 54, 7, 176, 280, 318, 300, 240, 156, 70, 8, 249, 408, 483, 484, 425, 324, 203, 88, 9, 340, 570, 696, 728, 680, 570, 420, 256, 108, 10, 451, 770, 963, 1040, 1015, 906, 735, 528, 315, 130, 11, 584, 1012, 1290, 1428, 1440, 1344, 1162, 920, 648, 380, 154, 12
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

A member of the accumulation chain ... < A185879 < A185877 < A185878 < A185880 < ...
See A144112 for the definition of accumulation array.

Examples

			Northwest corner:
  1,  4, 11,  24,  45, ...
  2, 10, 28,  60, 110, ...
  3, 18, 51, 108, 195, ...
  4, 28, 80, 168, 300, ...
  ...
		

Crossrefs

Row 1 to 3: A006527, A006331, A064043.
Column 1 to 5: A000027, A028552, A140677, 12*A000096, 5*A130861.

Programs

  • Mathematica
    f[n_, k_] := k*n*(2*k^2 - 3*k + 3*k*n - 3*n + 7)/6; Table[f[n - k + 1, k], {n,10}, {k, n, 1, -1}] // Flatten (* G. C. Greubel, Jul 21 2017 *)

Formula

T(n,k) = k*n*(2*k^2 -3*k +3*k*n -3*n +7)/6, k>=1, n>=1.
Showing 1-8 of 8 results.