cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A083254 a(n) = 2*phi(n) - n.

Original entry on oeis.org

1, 0, 1, 0, 3, -2, 5, 0, 3, -2, 9, -4, 11, -2, 1, 0, 15, -6, 17, -4, 3, -2, 21, -8, 15, -2, 9, -4, 27, -14, 29, 0, 7, -2, 13, -12, 35, -2, 9, -8, 39, -18, 41, -4, 3, -2, 45, -16, 35, -10, 13, -4, 51, -18, 25, -8, 15, -2, 57, -28, 59, -2, 9, 0, 31, -26, 65, -4, 19, -22, 69, -24, 71, -2, 5, -4, 43, -30, 77, -16, 27, -2, 81, -36, 43, -2, 25
Offset: 1

Views

Author

Labos Elemer, May 08 2003

Keywords

Comments

Möbius transform of A033879, deficiency of n. - Antti Karttunen, Dec 26 2017

Examples

			Case 1# - totient(x)-cototient[x] = 0 if x is a power of 2;
Case 2# - totient(x)>cototient[x] gives odd primes and also A067800, (= A014076 except probably A036798); e.g. n = 33: a(33) = 2.20-33 = 7; n = p prime: a(p) = p-2;
Case 3# - totient(x)<cototient[x] gives even numbers without powers of 2 and most probably A036798; e.g. n = 20: a(20) = -4; n = 105: a(105) = 2.48-105 = 96-105 = -9.
		

Crossrefs

Programs

Formula

a(n) = totient(n) - cototient(n) = A000010(n) - A051953(n).
From Antti Karttunen, Dec 26 2017: (Start)
a(n) = A065620(A297153(n)) = A117966(A297154(n)).
a(n) = A297114(n) + A297115(n).
a(2n) = A297114(2n).
For all n >= 1, -a(A000010(n)) = A293516(n).
(End)
Sum_{k=1..n} a(k) ~ c * n^2, where c = 6/Pi^2 - 1/2 = 0.107927... . - Amiram Eldar, Sep 07 2023

A036798 Odd numbers m such that there exists an even number k < m with phi(k) = phi(m).

Original entry on oeis.org

105, 165, 195, 315, 495, 525, 585, 735, 825, 945, 975, 1155, 1365, 1485, 1575, 1755, 1785, 1815, 1995, 2145, 2205, 2415, 2475, 2535, 2625, 2805, 2835, 2925, 3003, 3045, 3135, 3255, 3315, 3465, 3675, 3705, 3795, 3885, 3927, 4095, 4125, 4305, 4389, 4455
Offset: 1

Views

Author

Keywords

Comments

These numbers m appear to satisfy cototient(m) > totient(m) or 2*phi(m) < m; they seem to be the missing terms mentioned in A067800. - Labos Elemer, May 08 2003
All elements in this sequence must have 2*phi(m) < m, but not the reverse. See A118700. - Franklin T. Adams-Watters, May 21 2006
The numbers of terms that do not exceed 10^k, for k = 3, 4, ..., are 11, 108, 1139, 11036, 111796, ... . Apparently, the asymptotic density of this sequence exists and equals 0.011... . - Amiram Eldar, Nov 21 2024

Crossrefs

Cf. A091495 (Odd, squarefree n such that n/phi(n) > 2).

Programs

  • Maple
    N:= 10^4: # to get all terms <= N
    PhiE:= map(numtheory:-phi, [seq(i,i=2..N,2)]):
    A:= NULL:
    for n from 1 to N by 2 do
    t:= numtheory:-phi(n);
    if 2*t < n and member(t, PhiE[1..(n-1)/2]) then A:= A,n fi;
    od:
    A; # Robert Israel, Jan 06 2017
  • PARI
    is(m) = m%2 && #select(k -> !(k%2) && k < m, invphi(eulerphi(m))) > 0; \\ Amiram Eldar, Nov 21 2024, using Max Alekseyev's invphi.gp

A083255 Odd composite numbers k such that cototient(k) - phi(k) = k - 2*phi(k) is an odd prime.

Original entry on oeis.org

165, 195, 5187, 5865, 7395, 10005, 15045, 16215, 21165, 22695, 27285, 37995, 42585, 44115, 50235, 57885, 59415, 60945, 64005, 310845, 346035, 347565, 486795, 635205, 707115, 890445, 979455, 994755, 1049835, 1070535, 1078815, 1083585, 1121745
Offset: 1

Views

Author

Labos Elemer, May 08 2003

Keywords

Comments

Quite a number of terms are divisible by 3*5*17 = 255.

Examples

			m = 17425605 = 3*5*23*53*953 is a term since cototient(m) - phi(m) = 9712901 - 8712704 = 197 is an odd prime.
		

Crossrefs

Programs

  • Mathematica
    Do[s=EulerPhi[n]; c=n-s; If[Greater[c, s]&&PrimeQ[c-s]&&OddQ[c-s]&&!PrimeQ[n], Print[{n, c-s, n/255}]], {n, 1, 10000000}]

A089684 Numbers k such that 2*phi(k) > k.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 111, 113, 115, 117, 119, 121, 123, 125, 127
Offset: 1

Views

Author

Benoit Cloitre, Jan 16 2004

Keywords

Crossrefs

Cf. A000010, A036798, A067800 (nonprime n such that phi(n) > n/2).
Cf. A036798, the missing odd numbers.
Complement of A119432.

Programs

  • Mathematica
    lst={}; Do[If[2*EulerPhi[n]>n, AppendTo[lst, n]], {n, 200}]; lst (* T. D. Noe *)
    Select[ Range[130], 2EulerPhi[ # ] > # &] (* Robert G. Wilson v, Jan 16 2004 *)
  • PARI
    is(k) = 2*eulerphi(k) > k; \\ Amiram Eldar, Dec 01 2024

Formula

Asymptotic to c*n with c = 2.045...
2.04582 < c < 2.04818 (from the bounds on the asymptotic density of A119432 given by Kobayashi, 2016). - Amiram Eldar, Dec 01 2024
Showing 1-4 of 4 results.