cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A092402 Primes of the form p+8 where p is a prime.

Original entry on oeis.org

11, 13, 19, 31, 37, 61, 67, 79, 97, 109, 139, 157, 181, 199, 241, 271, 277, 367, 397, 409, 439, 457, 487, 499, 571, 577, 601, 607, 661, 691, 709, 727, 751, 769, 829, 919, 937, 991, 1021, 1039, 1069, 1117, 1171, 1201, 1231, 1237, 1291, 1297, 1327, 1381, 1447
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Mar 22 2004

Keywords

Crossrefs

Select primes from A000040 + 8.

Programs

  • Mathematica
    Select[Prime[Range[5,2000]],PrimeQ[#-8]&] (* Vincenzo Librandi, Jul 14 2012 *)

A067832 Primes p such that sigma(p-6) > p.

Original entry on oeis.org

41, 61, 71, 83, 97, 101, 127, 131, 139, 149, 151, 167, 181, 191, 193, 211, 223, 227, 241, 251, 271, 281, 293, 307, 311, 331, 347, 349, 367, 383, 397, 401, 409, 419, 421, 431, 433, 443, 457, 461, 479, 487, 491, 499, 503, 521, 523, 541, 557, 571, 587, 601
Offset: 1

Views

Author

Benoit Cloitre, Feb 08 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[3,150]],DivisorSigma[1,#-6]>#&] (* Harvey P. Dale, Jul 01 2017 *)
  • PARI
    isok(p) = p > 6 && isprime(p) && sigma(p-6) > p; \\ Amiram Eldar, Apr 24 2025

A098933 Primes of the form p+14, where p is a prime.

Original entry on oeis.org

17, 19, 31, 37, 43, 61, 67, 73, 97, 103, 127, 151, 163, 181, 193, 211, 241, 271, 277, 283, 307, 331, 367, 373, 397, 433, 457, 463, 523, 571, 577, 601, 607, 613, 631, 661, 673, 691, 733, 757, 787, 811, 823, 853, 877, 967, 991, 997, 1033, 1063, 1117, 1123, 1201
Offset: 1

Views

Author

Douglas Winston (douglas.winston(AT)srupc.com), Oct 20 2004

Keywords

Crossrefs

Programs

  • PARI
    isok(n) = isprime(n) && isprime(n - 14) \\ Michel Marcus, Jul 17 2013

A172988 Primes p such that either p-3 or p-6 is prime.

Original entry on oeis.org

5, 11, 13, 17, 19, 23, 29, 37, 43, 47, 53, 59, 67, 73, 79, 89, 103, 107, 109, 113, 137, 157, 163, 173, 179, 197, 199, 229, 233, 239, 257, 263, 269, 277, 283, 313, 317, 337, 353, 359, 373, 379, 389, 439, 449, 463, 467, 509, 547, 563, 569, 577, 593, 599, 607, 613
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Feb 07 2010

Keywords

Comments

5 is the only prime p for which p-3 is prime, since p-3 is even for any odd prime and 2 is the only even prime. - Harvey P. Dale, Apr 03 2019

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[150]],AnyTrue[#+{-3,-6},PrimeQ]&] (* Requires Mathematica version 10 or later *) (* or *) Join[{5},Select[Prime[ Range[ 3,150]],PrimeQ[#-6]&]] (* see Comment *) (* Harvey P. Dale, Apr 03 2019 *)

Formula

a(n)=A046117(n+1).

Extensions

449 inserted by R. J. Mathar, Mar 09 2010
Showing 1-4 of 4 results.