A067855 Square of the Euclidean length of the vector of Littlewood-Richardson coefficients of Sum_{lambda |- n} s_lambda^2, where s_lambda are the symmetric Schur functions and the sum runs over all partitions lambda of n.
1, 2, 8, 26, 94, 326, 1196, 4358, 16248, 60854, 230184, 874878, 3343614, 12825418, 49368388, 190554410, 737328366, 2858974502, 11106267880, 43215101102, 168398785002, 657070401106, 2566847255572, 10038191414610, 39295007540748
Offset: 0
Examples
For n=3 the s_lambda^2 summed over all partitions of n and decomposed into a sum of Schur functions yields s(6) + 2 s(3,3) + 2 s(4,2) + s(5,1) + 2 s(2,2,2) + 2 s(3,2,1) + s(4,1,1) + 2 s(2,2,1,1) + s(3,1,1,1) + s(2,1,1,1,1) + s(1,1,1,1,1,1), and the sum of the squares of the coefficients {1, 2, 2, 1, 2, 2, 1, 2, 1, 1, 1} gives a(3) = 26.
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- J. B. Geloun and S. Ramgoolam, Counting Tensor Model Observables and Branched Covers of the 2-Sphere, arXiv preprint arXiv:1307.6490 [hep-th], 2013.
- Eric Weisstein's World of Mathematics, Partition.
- Wikipedia, Littlewood-Richardson rule, as of Dec 18 2018.
- Wikipedia, Schur polynomial, as of Jan 13 2020.
Crossrefs
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=1, binomial(n+n, n), add(b(j, 1)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=0..33); # Alois P. Heinz, Aug 24 2019
-
Mathematica
Table[Tr[(Apply[List, Sum[Tr[s @@@ LRRule[\[Lambda], \[Lambda]]], {\[Lambda], Partitions[n]}]] /. s[] -> 1)^2], {n, 1, 10}]; (* with 'LRRule' defined in http://users.telenet.be/Wouter.Meeussen/ToolBox.nb - Wouter Meeussen, Jan 19 2020 *) b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 1, Binomial[n+n, n], Sum[b[j, 1]*b[n - i*j, i-1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Table[a[n], {n, 0, 33}] (* Jean-François Alcover, Jan 02 2022, after Alois P. Heinz *)
-
PARI
A067855_upto(N)=Vec(1/sqrt(prod(i=1,N-1,1-4*'x^i+O('x^N)))) \\ M. F. Hasler, Jan 23 2020
Formula
G.f.: 1/sqrt(Product_{i >= 1} (1 - 4*x^i)).
Euler transform of A001868(n)/2. a(n) = Sum_{pi} Product_{m=1..n} binomial(2*p(m), p(m)), where pi runs through all nonnegative solutions of p(1) + 2*p(2) + ... + n*p(n)=n. - Vladeta Jovovic, Mar 25 2006
a(n) ~ 2^(2*n) / sqrt(c*Pi*n), where c = QPochhammer[1/4] = 0.688537537120339... - Vaclav Kotesovec, Apr 22 2018
By definition, a(n) = Sum_{mu |- 2n} c_mu^2 where Sum_{lambda |- n} s_lambda^2 = Sum_{mu |- 2n} c_mu s_mu, where s_lambda are the Schur polynomials (symmetric in 2n variables) and the sums run over all partitions of n resp. 2n. - M. F. Hasler, Jan 19 2020
Extensions
More terms from Vladeta Jovovic, Mar 25 2006
Name edited by M. F. Hasler following observations by Wouter Meeussen, Jan 17 2020
Comments