A067870 Numbers k such that k and 3^k end with the same digit.
7, 13, 27, 33, 47, 53, 67, 73, 87, 93, 107, 113, 127, 133, 147, 153, 167, 173, 187, 193, 207, 213, 227, 233, 247, 253, 267, 273, 287, 293, 307, 313, 327, 333, 347, 353, 367, 373, 387, 393, 407, 413, 427, 433, 447, 453, 467, 473, 487, 493, 507, 513, 527, 533
Offset: 1
Examples
3^13 = 1594323 hence 13 is in the sequence.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Mathematica
LinearRecurrence[{1, 1, -1}, {7, 13, 27}, 50] (* Amiram Eldar, Feb 27 2023 *)
-
PARI
a(n) = (5*(2*n-1)*(-1)^n - 2)*(-1)^n; \\ Jinyuan Wang, Apr 06 2020
-
PARI
Vec(x*(7 + 6*x + 7*x^2) / ((1 - x)^2*(1 + x)) + O(x^50)) \\ Colin Barker, Apr 06 2020
Formula
a(2*n+1) = 20*n-13, a(2*n) = 20*n-7.
a(n) = 20*(n-1)-a(n-1) for n>1, a(1)=7. - Vincenzo Librandi, Aug 08 2010
From Colin Barker, Apr 06 2020: (Start)
G.f.: x*(7 + 6*x + 7*x^2) / ((1 - x)^2*(1 + x)).
a(n) = -5 - 2*(-1)^n + 10*n for n>0.
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(3*Pi/20)*Pi/20. - Amiram Eldar, Feb 27 2023
Comments