cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067870 Numbers k such that k and 3^k end with the same digit.

Original entry on oeis.org

7, 13, 27, 33, 47, 53, 67, 73, 87, 93, 107, 113, 127, 133, 147, 153, 167, 173, 187, 193, 207, 213, 227, 233, 247, 253, 267, 273, 287, 293, 307, 313, 327, 333, 347, 353, 367, 373, 387, 393, 407, 413, 427, 433, 447, 453, 467, 473, 487, 493, 507, 513, 527, 533
Offset: 1

Views

Author

Benoit Cloitre, Mar 07 2002

Keywords

Comments

Also numbers k such that k^k ends with 3. - Bruno Berselli, Dec 11 2018
Numbers congruent to {7, 13} mod 20. - Amiram Eldar, Feb 27 2023

Examples

			3^13 = 1594323 hence 13 is in the sequence.
		

Programs

  • Mathematica
    LinearRecurrence[{1, 1, -1}, {7, 13, 27}, 50] (* Amiram Eldar, Feb 27 2023 *)
  • PARI
    a(n) = (5*(2*n-1)*(-1)^n - 2)*(-1)^n; \\ Jinyuan Wang, Apr 06 2020
    
  • PARI
    Vec(x*(7 + 6*x + 7*x^2) / ((1 - x)^2*(1 + x)) + O(x^50)) \\ Colin Barker, Apr 06 2020

Formula

a(2*n+1) = 20*n-13, a(2*n) = 20*n-7.
a(n) = 20*(n-1)-a(n-1) for n>1, a(1)=7. - Vincenzo Librandi, Aug 08 2010
From Colin Barker, Apr 06 2020: (Start)
G.f.: x*(7 + 6*x + 7*x^2) / ((1 - x)^2*(1 + x)).
a(n) = -5 - 2*(-1)^n + 10*n for n>0.
a(n) = a(n-1) + a(n-2) - a(n-3) for n>3. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(3*Pi/20)*Pi/20. - Amiram Eldar, Feb 27 2023