cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A006872 Numbers k such that phi(k) = phi(sigma(k)).

Original entry on oeis.org

1, 3, 15, 26, 39, 45, 74, 104, 111, 117, 122, 146, 175, 183, 195, 219, 296, 314, 333, 357, 386, 471, 488, 549, 554, 555, 579, 584, 585, 608, 626, 646, 657, 794, 831, 842, 914, 915, 939, 962, 1071, 1082, 1095, 1191, 1226, 1256, 1263, 1292, 1322, 1346
Offset: 1

Views

Author

Keywords

References

  • S. W. Golomb, Equality among number-theoretic functions, Abstract 882-11-16, Abstracts Amer. Math. Soc., 14 (1993), 415-416.
  • R. K. Guy, Unsolved Problems in Number Theory, B42.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000010, A000203, A062401, A353637 (characteristic function).
Positions of zeros in A353636.
Setwise difference of A353684 and A353683, and also of A353685 and A353686.
Intersection of A353684 and A353685.
Subsequences: A260021, A353634, A353635, A353679 (odd terms).

Programs

  • Haskell
    a006872 n = a006872_list !! (n-1)
    a006872_list = filter (\x -> a000010' x == a000010' (a000203' x)) [1..]
    -- Reinhard Zumkeller, Jul 14 2015
    
  • Magma
    [n:n in [1..2000]| EulerPhi(SumOfDivisors(n)) eq EulerPhi(n)]; // Marius A. Burtea, Jan 01 2019
  • Mathematica
    Select[Range@ 1350, EulerPhi@ # == EulerPhi@ DivisorSigma[1, #] &] (* Michael De Vlieger, Jan 01 2019 *)
  • PARI
    lista(nn) = {for (i=1, nn, if (eulerphi(i)==eulerphi(sigma(i)), print1(i, ", ")););} \\ Michel Marcus, May 25 2013
    

Extensions

More terms from Jud McCranie

A228519 Numbers n such that sigma(n) = sigma(n - phi(n)), where sigma(n) is the sum of divisors of n and phi(n) is the Euler totient function of n.

Original entry on oeis.org

9356, 52412, 110442, 160834, 220884, 266866, 289230, 321668, 420790, 441768, 533732, 556818, 578460, 643336, 731530, 841580, 883536, 1067464, 1113636, 1156920, 1286672, 1446150, 1463060, 1683160, 1767072, 2103950, 2134928, 2227272, 2313840, 2545888, 2573344, 2892300
Offset: 1

Views

Author

Paolo P. Lava, Jun 21 2016

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local n; for n from 1 to q do
    if sigma(n)=sigma(n-phi(n)) then print(n); fi; od; end: P(10^9);
  • Mathematica
    Select[Range[10^6], DivisorSigma[1, #] == DivisorSigma[1, # - EulerPhi@ #] &] (* Michael De Vlieger, Jun 21 2016 *)

Formula

sigma(9356- phi(9356)) = sigma(9356 - 4676) = 16380 = sigma(9356).
Showing 1-2 of 2 results.