A067886 Numbers k such that 2^k+1 and 2^k-1 have the same number of distinct prime factors.
2, 3, 6, 9, 11, 14, 15, 18, 21, 23, 27, 29, 33, 42, 47, 51, 53, 54, 57, 69, 71, 73, 74, 81, 82, 86, 95, 101, 105, 111, 113, 114, 115, 121, 129, 130, 138, 141, 142, 165, 167, 169, 179, 181, 199, 203, 209, 213, 230, 233, 235, 243, 250, 255, 258, 277, 279, 306, 307
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..141
Programs
-
Magma
[k: k in [2..307] | #PrimeDivisors(2^k-1) eq #PrimeDivisors(2^k+1) ]; // Marius A. Burtea, Feb 13 2020
-
Mathematica
sndpQ[n_]:=Module[{c=2^n},PrimeNu[c+1]==PrimeNu[c-1]]; Select[Range[ 250], sndpQ] (* Harvey P. Dale, Feb 04 2016 *)
-
PARI
isok(k) = omega(2^k-1) == omega(2^k+1); \\ Michel Marcus, Feb 13 2020
Extensions
More terms from Rick L. Shepherd, May 14 2002
More terms from Amiram Eldar, Feb 13 2020
Comments