A067948 Triangle of labeled rooted trees according to the number of increasing edges.
1, 1, 1, 2, 5, 2, 6, 26, 26, 6, 24, 154, 269, 154, 24, 120, 1044, 2724, 2724, 1044, 120, 720, 8028, 28636, 42881, 28636, 8028, 720, 5040, 69264, 319024, 655248, 655248, 319024, 69264, 5040, 40320, 663696, 3793212, 10095228, 13861809, 10095228, 3793212, 663696, 40320
Offset: 1
Examples
Triangle starts: 1; 1, 1; 2, 5, 2; 6, 26, 26, 6; 24, 154, 269, 154, 24; ... From _Bruno Berselli_, Jan 12 2021: (Start) The rows of the triangle are the coefficients of the following polynomials: 1: 1; 2: 1*x+1; 3: (x+2)*(2*x+1) = 2*x^2 + 5*x + 2; 4: (x+3)*(2*x+2)*(3*x+1) = 6*x^3 + 26*x^2 + 26*x + 6; 5: (x+4)*(2*x+3)*(3*x+2)*(4*x+1) = 24*x^4 + 154*x^3 + 269*x^2 + 154*x + 24, etc. (End)
Links
- Alois P. Heinz, Rows n = 1..141, flattened
- Brian Drake, An inversion theorem for labeled trees and some limits of areas under lattice paths (Example 1.7.2), A dissertation presented to the Faculty of the Graduate School of Arts and Sciences of Brandeis University.
- Ira M. Gessel and Seunghyun Seo, A refinement of Cayley's formula for trees, Electronic J. Combin. 11, no. 2 (2004-6) (The Stanley Festschrift volume).
- A. M. Khidr and B. S. El-Desouky, A symmetric sum involving the Stirling numbers of the first kind, European J. Combin., 5 (1984), 51-54.
Programs
-
Maple
b:= proc(n) option remember; expand(x*mul(n-k+k*x, k=1..n-1)) end: T:= (n, k)-> coeff(b(n), x, k): seq(seq(T(n,k), k=1..n), n=1..10); # Alois P. Heinz, Jun 26 2024
-
Mathematica
L := CoefficientList[InverseSeries[Series[(Exp[-x y] + Sinh[x] - Cosh[x])/(1 - y), {x, 0, 8}]], {x}]; Table[CoefficientList[L, y][[n + 1]] n!, {n, 1, 8}] // Flatten (* Peter Luschny, Jun 23 2018 *)
Formula
G.f. of row n: Sum_{k=0..n-1} T(n, k) x^k = Product_{i=1..n-1} (n - i + i*x).
From Peter Bala, Sep 29 2011: (Start)
E.g.f.: Compositional inverse of (exp(x) - exp(x*t))/((1 - t)*exp(x*(1 + t))) = x + (1 + t)*x^2/2! + (2 + 5*t + 2*t^2)*x^3/3! + ...
Let f(x,t) = (1 - t)/(exp(-x) - t*exp(-x*t)) and let D be the operator f(x,t)*d/dx. Then the (n+1)-th row generating polynomial equals (D^n)(f(x,t)) evaluated at x = 0. See [Drake, example 1.7.2] for the combinatorial interpretation of this table in terms of labeled trees. (End)
Comments