cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A067948 Triangle of labeled rooted trees according to the number of increasing edges.

Original entry on oeis.org

1, 1, 1, 2, 5, 2, 6, 26, 26, 6, 24, 154, 269, 154, 24, 120, 1044, 2724, 2724, 1044, 120, 720, 8028, 28636, 42881, 28636, 8028, 720, 5040, 69264, 319024, 655248, 655248, 319024, 69264, 5040, 40320, 663696, 3793212, 10095228, 13861809, 10095228, 3793212, 663696, 40320
Offset: 1

Views

Author

Cedric Chauve (chauve(AT)lacim.uqam.ca), Mar 19 2002

Keywords

Comments

Each line is symmetric.
The sum of each line is n^(n-1), A000169.
The outer diagonal is (n-1)!, A000142.
The next-to-last diagonal is A001705.

Examples

			Triangle starts:
   1;
   1,   1;
   2,   5,   2;
   6,  26,  26,   6;
  24, 154, 269, 154,  24;
  ...
From _Bruno Berselli_, Jan 12 2021: (Start)
The rows of the triangle are the coefficients of the following polynomials:
1: 1;
2: 1*x+1;
3: (x+2)*(2*x+1) = 2*x^2 + 5*x + 2;
4: (x+3)*(2*x+2)*(3*x+1) = 6*x^3 + 26*x^2 + 26*x + 6;
5: (x+4)*(2*x+3)*(3*x+2)*(4*x+1) = 24*x^4 + 154*x^3 + 269*x^2 + 154*x + 24, etc.
(End)
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
          expand(x*mul(n-k+k*x, k=1..n-1))
        end:
    T:= (n, k)-> coeff(b(n), x, k):
    seq(seq(T(n,k), k=1..n), n=1..10);  # Alois P. Heinz, Jun 26 2024
  • Mathematica
    L := CoefficientList[InverseSeries[Series[(Exp[-x y] + Sinh[x] - Cosh[x])/(1 - y), {x, 0, 8}]], {x}]; Table[CoefficientList[L, y][[n + 1]] n!, {n, 1, 8}] // Flatten (* Peter Luschny, Jun 23 2018 *)

Formula

G.f. of row n: Sum_{k=0..n-1} T(n, k) x^k = Product_{i=1..n-1} (n - i + i*x).
From Peter Bala, Sep 29 2011: (Start)
E.g.f.: Compositional inverse of (exp(x) - exp(x*t))/((1 - t)*exp(x*(1 + t))) = x + (1 + t)*x^2/2! + (2 + 5*t + 2*t^2)*x^3/3! + ...
Let f(x,t) = (1 - t)/(exp(-x) - t*exp(-x*t)) and let D be the operator f(x,t)*d/dx. Then the (n+1)-th row generating polynomial equals (D^n)(f(x,t)) evaluated at x = 0. See [Drake, example 1.7.2] for the combinatorial interpretation of this table in terms of labeled trees. (End)