A067961 Number of binary arrangements without adjacent 1's on n X n torus connected n-s.
1, 9, 64, 2401, 161051, 34012224, 17249876309, 23811286661761, 84590643846578176, 792594609605189126649, 19381341794579313317802199, 1242425797286480951825250390016, 208396491430277954192889648311785961, 91534759488004239323168528670973468727049
Offset: 1
Examples
Neighbors for n=4: | | | | o o o o | | | | | | | | o o o o | | | | | | | | o o o o | | | | | | | | o o o o | | | |
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..69
- Vaclav Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 409.
Crossrefs
Cf. circle A000204, line A000045, arrays: ne-sw nw-se A067965, e-w ne-sw nw-se A067963, n-s nw-se A067964, e-w n-s nw-se A066864, e-w ne-sw n-s nw-se A063443, n-s A067966, e-w n-s A006506, nw-se A067962, toruses: bare A002416, ne-sw nw-se A067960, ne-sw n-s nw-se A067959, e-w ne-sw n-s nw-se A067958, e-w n-s A027683, e-w ne-sw n-s A066866.
Cf. A156216. - Paul D. Hanna, Sep 13 2010
Cf. A215941.
Programs
-
Magma
[Lucas(n)^n: n in [1..15]]; // Vincenzo Librandi, Mar 15 2014
-
Maple
a:= n-> (<<0|1>, <1|1>>^n. <<2, 1>>)[1$2]^n: seq(a(n), n=1..15); # Alois P. Heinz, Aug 01 2021
-
Mathematica
Table[LucasL[n]^n,{n,15}] (* Harvey P. Dale, Mar 13 2014 *)
Formula
a(n) = L(n)^n, where L(n) = A000032(n) is the n-th Lucas number.
Logarithmic derivative of A156216. - Paul D. Hanna, Sep 13 2010
Sum_{n>=1} 1/a(n) = A215941. - Amiram Eldar, Nov 17 2020
Extensions
Edited by Dean Hickerson, Feb 15 2002