cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068011 Number of subsets of {1,2,3,...,n} that sum to 0 mod 5.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 14, 26, 52, 104, 208, 412, 820, 1640, 3280, 6560, 13112, 26216, 52432, 104864, 209728, 419440, 838864, 1677728, 3355456, 6710912, 13421792, 26843552, 53687104, 107374208, 214748416, 429496768, 858993472, 1717986944, 3435973888, 6871947776
Offset: 0

Views

Author

Antti Karttunen, Feb 11 2002

Keywords

Comments

For n>2, a(n) = 2 * A068031(n).

Crossrefs

5th row of A068009.

Programs

  • Maple
    A068011_rec := proc(n); if(0 = n) then RETURN(1); fi; if(1 = (n mod 5)) then RETURN(2*A068011_rec(n-1)-2^((n-1)/5)); fi; if(2 = (n mod 5)) then RETURN(2*A068011_rec(n-1)-2^((n-2)/5)); fi; RETURN(2*A068011_rec(n-1)); end;
    # second Maple program:
    b:= proc(n, s) option remember; `if`(n=0, `if`(s=0, 1, 0),
          b(n-1, s)+b(n-1, irem(s+n, 5)))
        end:
    a:= n-> b(n, 0):
    seq(a(n), n=0..35);  # Alois P. Heinz, May 02 2025
  • Mathematica
    LinearRecurrence[{2, 0, 0, 0, 2, -4}, {1, 1, 1, 2, 4, 8}, 40] (* Jean-François Alcover, Mar 06 2016 *)

Formula

a(k+1) = 2*a(k) if k == 2, 3, or 4 mod 5, 2*a(k)-2^(k/5) if k == 0 mod 5, 2*a(k)-2^((k-1)/5) if k == 1 mod 5.
G.f.: -(x^2-x+1)*(2*x^3+2*x^2-1) / ((2*x-1)*(2*x^5-1)). - Colin Barker, Dec 22 2012
If n == 0 mod 5, then a(n) = (2^n + 4*2^(n/5))/5. - Giorgos Kalogeropoulos, May 02 2025
a(n) ~ 2^n/5. - Stefano Spezia, May 02 2025