cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068191 Numbers n such that A067734(n)=0; complement of A002473; at least one prime-factor of n is larger than 7, it has 2 decimal digits.

Original entry on oeis.org

11, 13, 17, 19, 22, 23, 26, 29, 31, 33, 34, 37, 38, 39, 41, 43, 44, 46, 47, 51, 52, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 97, 99, 101, 102, 103, 104, 106, 107, 109, 110, 111, 113, 114
Offset: 1

Views

Author

Labos Elemer, Feb 19 2002

Keywords

Comments

Also numbers n such that A198487(n) = 0 and A107698(n) = 0. - Jaroslav Krizek, Nov 04 2011
A086299(a(n)) = 0. - Reinhard Zumkeller, Apr 01 2012
A262401(a(n)) < a(n). - Reinhard Zumkeller, Sep 25 2015
Numbers not in A007954. - Mohammed Yaseen, Sep 13 2022

Crossrefs

Programs

  • Haskell
    import Data.List (elemIndices)
    a068191 n = a068191_list !! (n-1)
    a068191_list = map (+ 1) $ elemIndices 0 a086299_list
    -- Reinhard Zumkeller, Apr 01 2012
    
  • Mathematica
    Select[Range@120, Last@Map[First, FactorInteger@#] > 7 &] (* Vincenzo Librandi, Sep 19 2016 *)
  • Python
    from sympy import integer_log
    def A068191(n):
        def f(x):
            c = n
            for i in range(integer_log(x,7)[0]+1):
                i7 = 7**i
                m = x//i7
                for j in range(integer_log(m,5)[0]+1):
                    j5 = 5**j
                    r = m//j5
                    for k in range(integer_log(r,3)[0]+1):
                        c += (r//3**k).bit_length()
            return c
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Sep 16 2024