A068310 n^2 - 1 divided by its largest square divisor.
3, 2, 15, 6, 35, 3, 7, 5, 11, 30, 143, 42, 195, 14, 255, 2, 323, 10, 399, 110, 483, 33, 23, 39, 3, 182, 87, 210, 899, 15, 1023, 17, 1155, 34, 1295, 38, 1443, 95, 1599, 105, 1763, 462, 215, 506, 235, 138, 47, 6, 51, 26, 2703, 78, 2915, 21, 3135, 203, 3363, 870, 3599
Offset: 2
Examples
a(6) = 35, as 6^2 - 1 = 35 itself is squarefree. 7^2-1 = 48 = A005563(6), whose largest square divisor is A008833(48) = 16, so a(7) = 48/16 = 3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 2..10000
Programs
-
Haskell
a068310 n = f 1 $ a027746_row (n^2 - 1) where f y [] = y f y [p] = y*p f y (p:ps'@(p':ps)) | p == p' = f y ps | otherwise = f (y*p) ps' -- Reinhard Zumkeller, Nov 26 2011
-
Mathematica
a[n_] := Times@@(#[[1]] ^ Mod[ #[[2]], 2]&/@FactorInteger[n^2-1]) Table[(n^2-1)/Max[Select[Divisors[n^2-1],IntegerQ[Sqrt[#]]&]],{n,2,60}] (* Harvey P. Dale, Dec 08 2019 *)
-
PARI
a(n) = core(n*n - 1); \\ David Wasserman, Mar 07 2005
Formula
a(n) = A007913(n^2-1).
a(n) = A005563(n-1) / A008833(n^2 - 1). - Reinhard Zumkeller, Nov 26 2011; corrected by Georg Fischer, Dec 10 2022
Extensions
Edited by Dean Hickerson, Mar 19 2002
Entry revised by N. J. A. Sloane, Apr 27 2007
Comments