cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068346 a(n) = n'' = second arithmetic derivative of n.

Original entry on oeis.org

0, 0, 0, 0, 4, 0, 1, 0, 16, 5, 1, 0, 32, 0, 6, 12, 80, 0, 10, 0, 44, 7, 1, 0, 48, 7, 8, 27, 80, 0, 1, 0, 176, 9, 1, 16, 92, 0, 10, 32, 72, 0, 1, 0, 112, 16, 10, 0, 240, 9, 39, 24, 92, 0, 108, 32, 96, 13, 1, 0, 96, 0, 14, 20, 640, 21, 1, 0, 156, 15, 1, 0, 220, 0, 16, 16, 176, 21, 1, 0, 368, 216
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 28 2002

Keywords

Comments

a(2p) = 1 for any prime p implies p,p+2 form a twin prime pair. - Kevin J. Gomez, Aug 29 2017
Indices of records > 0 appear to all belong to A116882. - Bill McEachen, Oct 16 2023

Crossrefs

Cf. A003415 (arithmetic derivative of n), A099306 (third arithmetic derivative of n).
Column k=2 of A258651.

Programs

  • Haskell
    a068346 = a003415 . a003415  -- Reinhard Zumkeller, Nov 10 2013
  • Maple
    d:= n-> n*add(i[2]/i[1], i=ifactors(n)[2]):
    a:= n-> d(d(n));
    seq(a(n), n=0..100);  # Alois P. Heinz, Aug 29 2017
  • Mathematica
    dn[0]=0; dn[1]=0; dn[n_]:=Module[{f=Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus@@(n*f[[2]]/f[[1]])]]; Table[dn[dn[n]], {n, 100}] (T. D. Noe)
    f[n_] := If[ Abs@ n < 2, 0, n*Total[#2/#1 & @@@ FactorInteger[Abs@ n]]]; Table[ f[ f[ n]], {n, 81}] (* Robert G. Wilson v, May 12 2012 *)

Formula

a(n) = A003415(A003415(n)).
a(A000040(n)) = 0; a(A157037(n)) = 1. - Reinhard Zumkeller, Feb 22 2009

Extensions

More terms from T. D. Noe, Oct 12 2004