cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068470 Decimal expansion of exp(sqrt(Pi)).

Original entry on oeis.org

5, 8, 8, 5, 2, 7, 7, 2, 5, 0, 0, 1, 8, 0, 2, 8, 8, 7, 6, 6, 1, 1, 7, 6, 1, 8, 5, 3, 4, 0, 5, 7, 6, 9, 8, 0, 3, 9, 9, 0, 6, 9, 8, 6, 1, 8, 9, 8, 5, 9, 2, 4, 3, 3, 9, 3, 5, 1, 9, 8, 3, 4, 0, 7, 6, 2, 9, 3, 4, 2, 2, 5, 0, 2, 0, 2, 7, 1, 6, 2, 2, 1, 9, 4, 3, 3, 3, 8, 4, 5, 4, 4, 0, 2, 1, 8, 4, 1, 1, 0, 1, 0, 5, 5, 0
Offset: 1

Views

Author

Benoit Cloitre, Mar 10 2002

Keywords

Examples

			5.8852772500180288766117618534057698039906986189859...
		

Crossrefs

Cf. A002161 (sqrt(Pi)), A039661 (exp(Pi)).

Programs

  • Magma
    SetDefaultRealField(RealField(100)); R:=RealField(); Exp(Sqrt(Pi(R))); // G. C. Greubel, Nov 27 2018
    
  • Maple
    evalf[120](exp(sqrt(Pi))); # Muniru A Asiru, Nov 28 2018
  • Mathematica
    RealDigits[Exp[Sqrt[Pi]],10,120][[1]] (* Harvey P. Dale, Aug 22 2012 *)
  • PARI
    default(realprecision, 100); exp(sqrt(Pi)) \\ G. C. Greubel, Jan 12 2017
    
  • Sage
    numerical_approx(exp(sqrt(pi)), digits=100) # G. C. Greubel, Nov 27 2018