A068492 Primes that remain prime after each digit is replaced by its square.
11, 13, 17, 19, 71, 73, 89, 101, 103, 107, 131, 137, 149, 167, 173, 191, 197, 199, 223, 229, 233, 283, 307, 311, 313, 331, 337, 359, 383, 401, 433, 439, 461, 463, 491, 523, 569, 593, 631, 641, 647, 659, 709, 733, 743, 773, 809, 823, 859, 907, 911, 919, 947
Offset: 1
Examples
When each digit of the prime 89 is replaced by its square, 6481, a prime, results. Hence 89 is a term of the sequence.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..785 from Zak Seidov)
Programs
-
Magma
DigitsSquared:=func< n | StringToInteger(&cat[ IntegerToString(a): a in Reverse([ d^2: d in Intseq(n) ]) ]) >; IsA068492:=func< p | IsPrime(DigitsSquared(p)) >; [ p: p in PrimesUpTo(1000) | IsA068492(p) ]; // Klaus Brockhaus, Mar 05 2011
-
Mathematica
f[n_] := Block[{a = IntegerDigits[n], b = "", k = 1, l}, l = Length[a]; While[k < l + 1, b = StringJoin[b, ToString[a[[k]]^2]]; k++ ]; ToExpression[b]]; Do[ If[ PrimeQ[ f[ Prime[n]]], Print[ Prime[n]]], {n, 1, 150} ] Select[Prime[Range[200]],PrimeQ[FromDigits[Flatten[IntegerDigits/@(IntegerDigits[#]^2)]]]&] (* Harvey P. Dale, Dec 31 2023 *)
-
PARI
digsquare(n)={fromdigits(concat(apply(d->if(d,digits(d^2),[0]),digits(n))))} ok(n)={isprime(n)&&isprime(digsquare(n))} \\ Andrew Howroyd, Feb 27 2018
-
Python
from sympy import isprime, nextprime n = 2 while n < 8000: t = int(''.join(str(int(i)**2) for i in list(str(n)))) if isprime(t): print(n) n = nextprime(n) # Abhiram R Devesh, Feb 09 2015
Extensions
Edited and extended by Robert G. Wilson v, Mar 19 2002
Duplicate a(1)-a(215) removed from b-file by Andrew Howroyd, Feb 27 2018