cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A068492 Primes that remain prime after each digit is replaced by its square.

Original entry on oeis.org

11, 13, 17, 19, 71, 73, 89, 101, 103, 107, 131, 137, 149, 167, 173, 191, 197, 199, 223, 229, 233, 283, 307, 311, 313, 331, 337, 359, 383, 401, 433, 439, 461, 463, 491, 523, 569, 593, 631, 641, 647, 659, 709, 733, 743, 773, 809, 823, 859, 907, 911, 919, 947
Offset: 1

Views

Author

Joseph L. Pe, Mar 11 2002

Keywords

Examples

			When each digit of the prime 89 is replaced by its square, 6481, a prime, results. Hence 89 is a term of the sequence.
		

Programs

  • Magma
    DigitsSquared:=func< n | StringToInteger(&cat[ IntegerToString(a): a in Reverse([ d^2: d in Intseq(n) ]) ]) >; IsA068492:=func< p | IsPrime(DigitsSquared(p)) >; [ p: p in PrimesUpTo(1000) | IsA068492(p) ]; // Klaus Brockhaus, Mar 05 2011
    
  • Mathematica
    f[n_] := Block[{a = IntegerDigits[n], b = "", k = 1, l}, l = Length[a]; While[k < l + 1, b = StringJoin[b, ToString[a[[k]]^2]]; k++ ]; ToExpression[b]]; Do[ If[ PrimeQ[ f[ Prime[n]]], Print[ Prime[n]]], {n, 1, 150} ]
    Select[Prime[Range[200]],PrimeQ[FromDigits[Flatten[IntegerDigits/@(IntegerDigits[#]^2)]]]&] (* Harvey P. Dale, Dec 31 2023 *)
  • PARI
    digsquare(n)={fromdigits(concat(apply(d->if(d,digits(d^2),[0]),digits(n))))}
    ok(n)={isprime(n)&&isprime(digsquare(n))} \\ Andrew Howroyd, Feb 27 2018
    
  • Python
    from sympy import isprime, nextprime
    n = 2
    while n < 8000:
        t = int(''.join(str(int(i)**2) for i in list(str(n))))
        if isprime(t):
            print(n)
        n = nextprime(n)
    # Abhiram R Devesh, Feb 09 2015

Extensions

Edited and extended by Robert G. Wilson v, Mar 19 2002
Duplicate a(1)-a(215) removed from b-file by Andrew Howroyd, Feb 27 2018