A068600
Number of n-uniform tilings having n different arrangements of polygons about their vertices.
Original entry on oeis.org
11, 20, 39, 33, 15, 10, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
- This sequence was originally calculated by Otto Krotenheerdt.
- Branko Grünbaum and G. C. Shephard, Tilings and Patterns. W. H. Freeman, New York, 1987, page 69.
- Krotenheerdt, Otto. "Die homogenen Mosaike n-ter Ordnung in der euklidischen Ebene," Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-natur. Reihe, 18(1969), 273-290; 19 (1970)19-38 and 97-122.
A268184
Number of n-isohedral edge-to-edge tilings of regular polygons.
Original entry on oeis.org
3, 13, 29, 70, 140, 267, 559
Offset: 1
The three 1-isohedral tilings are the regular tilings (triangles, squares, hexagons). Of the 13 2-isohedral tilings, there are three with triangles and squares, eight with triangles and hexagons, one with triangles and dodecagons, and one with squares and octagons.
- D. Chavey, Periodic Tilings and Tilings by Regular Polygons I, Thesis, 1984, pp. 165-172 gives the 2-isohedral edge-to-edge tilings of regular polygons.
- D. Chavey, Tiling by Regular Polygons II: A Catalog of Tilings, Computers & Mathematics with Applications, Volume 17, Issues 1-3, 1989, Pages 147-165, illustrates 27 of the 29 3-isohedral edge-to-edge tilings of regular polygons, but classifies one (3^3.4^2; 3^2.4.3.4)2 on page 152 as 6-isohedral.
- Brian Galebach, Announcement of 7-Isohedral Tiling Count, Facebook
Analogous to the n-uniform edge-to-edge tilings, which has n orbits of vertices, as opposed to faces (
A068599).
A299780
Triangle read by rows: T(n,m) = number of n-uniform tilings having m different arrangements of polygons about their vertices, n >= 1 and 1 <= m <= n.
Original entry on oeis.org
11, 0, 20, 0, 22, 39, 0, 33, 85, 33, 0, 74, 149, 94, 15, 0, 100, 284, 187, 92, 10, 0
Offset: 1
Triangle begins:
11;
0, 20;
0, 22, 39;
0, 33, 85, 33;
0, 74, 149, 94, 15;
0, 100, 284, 187, 92, 10;
...
Other known positive terms are T(7,7) = 7, T(8,7) = 20, T(9,8) = 8, T(10,8) = 27 and T(11,9) = 1.
Column 1 gives 11 together with
A000004.
A299781
Triangle read by rows: T(n,m) = number of k-uniform tilings having m different arrangements of polygons about their vertices, for k = 1..n, with 1 <= m <= n.
Original entry on oeis.org
11, 11, 20, 11, 42, 39, 11, 75, 124, 33, 11, 149, 273, 127, 15, 11, 249, 557, 314, 107, 10, 11
Offset: 1
Triangle begins:
11;
11, 20;
11, 42, 39;
11, 75, 124, 33;
11, 149, 273, 127, 15;
11, 249, 557, 314, 107, 10;
...
A299782
a(n) is the total number of k-uniform tilings, for k = 1..n.
Original entry on oeis.org
11, 31, 92, 243, 575, 1248
Offset: 1
For n = 3 there are 11 uniform tilings, 20 2-uniform tilings and 61 3-uniform tilings. The sum of them is 11 + 20 + 61 = 92, so (3) = 92.
A242941
a(n) is the number of convex uniform tessellations in dimension n.
Original entry on oeis.org
- H. S. M. Coxeter, Regular Polytopes, Third Edition, Dover Publications, 1973, ISBN 9780486614809.
- B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, Vol. 4, No. 2 (1994), 49-56.
- N. W. Johnson, Uniform Polytopes, [To appear, cf. Weiss, Stehle, 2017].
- A. Andreini, Sulle reti di poliedri regolari e semiregolari e sulle correspondenti reto correlative [On the regular and semiregular nets of polyhedra and on the corresponding correlative nets], Mem. Società Italiana della Scienze, Ser.3, 14 (1905), 75-129.
- M. Deza and M. Shtogrin, Uniform Partitions of 3-space, their Relatives and Embedding, European Journal of Combinatorics, Vol. 21, No. 6 (2000), 807-814.
- B. Grünbaum and G. C. Shephard, Tilings by Regular Polygons, Mathematics Magazine, Vol. 50, No. 5 (1977), 227-247.
- J. Kepler, Harmonices Mundi [The Harmony of the World] (1619).
- G. Olshevsky, Uniform Panoploid Tetracombs (2006)
- A. I. Weiss and E. M. Stehle, Norman W. Johnson (12 November 1930 to 13 July 2017), The Art of Discrete and Applied Mathematics, Vol. 1, No. 1 (2018).
- Wikipedia, Convex uniform honeycomb
- Wikipedia, List of convex uniform tilings
List of coordination sequences for the 28 uniform 3D tilings: cab:
A299266,
A299267; crs:
A299268,
A299269; fcu:
A005901,
A005902; fee:
A299259,
A299265; flu-e:
A299272,
A299273; fst:
A299258,
A299264; hal:
A299274,
A299275; hcp:
A007899,
A007202; hex:
A005897,
A005898; kag:
A299256,
A299262; lta:
A008137,
A299276; pcu:
A005899,
A001845; pcu-i:
A299277,
A299278; reo:
A299279,
A299280; reo-e:
A299281,
A299282; rho:
A008137,
A299276; sod:
A005893,
A005894; sve:
A299255,
A299261; svh:
A299283,
A299284; svj:
A299254,
A299260; svk:
A010001,
A063489; tca:
A299285,
A299286; tcd:
A299287,
A299288; tfs:
A005899,
A001845; tsi:
A299289,
A299290; ttw:
A299257,
A299263; ubt:
A299291,
A299292; bnn:
A007899,
A007202. See the Proserpio link in
A299266 for overview.
Showing 1-6 of 6 results.
Comments