cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A090558 Duplicate of A068704.

Original entry on oeis.org

11, 421, 31, 41, 2551, 61, 71, 6481, 8191, 101
Offset: 1

Views

Author

Keywords

A242645 a(n) = concatenation of decimal expansions of powers of 11 (in decreasing order).

Original entry on oeis.org

1, 111, 121111, 1331121111, 146411331121111, 161051146411331121111, 1771561161051146411331121111, 194871711771561161051146411331121111, 214358881194871711771561161051146411331121111, 2357947691214358881194871711771561161051146411331121111
Offset: 0

Views

Author

N. J. A. Sloane, May 23 2014

Keywords

Comments

A068704(11) (presently unknown) is either 0, if every term here is composite, or the index of the first prime in the sequence.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember;
          `if`(n=0, 1, parse(cat(11^n, a(n-1))))
        end:
    seq(a(n), n=0..10);  # Alois P. Heinz, May 24 2014

Formula

a(n) is the concatenation of 11^n, 11^(n-1), ..., 121, 11, 1.

A267720 The smallest prime number formed by the concatenation of consecutive powers of n beginning with 1^0 = "1," and ending with a trailing "1" - or "0," if no such prime number exists.

Original entry on oeis.org

0, 131, 1416641, 151, 16361, 17491, 181, 191, 0, 1111211, 11214417282073624883229859841, 0, 11419627441, 1151, 1162564096655361048576167772162684354564294967296687194767361099511627776175921860444161, 1171, 1181, 11936168591, 1201
Offset: 2

Views

Author

Thomas S. Pedigo, Jan 19 2016

Keywords

Comments

It is not known whether solutions exist for A(2), A(10), or A(13); if there are any, they must be greater than 10^128.
A(10) has final exponent 35; "110100100010000...1000000000000000000000000000000000001", total length 667 digits. - Dana Jacobsen, Jan 22 2016
A(2) has exponent > 1100, length > 182841 digits. A(13) has exponent > 750, length > 314093 digits. - Dana Jacobsen, Jan 25 2016

Examples

			A(14)=11419627441; 14^0=1; 14^1=14; 14^2=196; 14^3=2744; 11419627441 is prime.
A(19)=11936168591; 19^0=1; 19^1=19; 19^2=361; 19^3=6859; 11936168591 is prime.
		

Crossrefs

Programs

  • Mathematica
    lim = 60; Table[SelectFirst[Rest@ FoldList[FromDigits@ Join[Most@ IntegerDigits@ #1, IntegerDigits[n^#2], {1}] &, 11, Range@ lim], PrimeQ], {n, 2, 20}] /. k_ /; MissingQ@ k -> 0 (* Michael De Vlieger, Jan 25 2016, Version 10.2 *)

Extensions

a(8) corrected by Thomas S. Pedigo, Dec 08 2021
Showing 1-3 of 3 results.