A068704 a(n) = smallest prime obtained as the concatenation of n^k, n^(k-1), n^(k-2), ..., n^2, n, 1 for some k >= 1; or 0 if no such prime exists.
11, 421, 31, 41, 2551, 61, 71, 6481, 8191, 101
Offset: 1
Examples
a(3) = 31 as the concatenation of 3^1 and 1 is prime, so here k = 1. a(5) = 2551= concatenation of 5^2, 5 and 1 is prime, so here k = 2. The known values are as follows: n k a(n) 1 1 11 2 2 421 3 1 31 4 1 41 5 2 2551 6 1 61 7 1 71 8 2 6481 9 2 8191 10 1 101 11 ? ? (see A242645) 12 4 207361728144121 13 1 131 14 ? ? 15 1 151 16 4 655364096256161 17 2 289171 18 1 181 19 1 191 20 ? ? 21 1 211 22 ? ? 23 ? ? 24 1 241 25 1 251 26 ? ? 27 1 271 28 1 281 29 4 70728124389841291 (_Jayanta Basu_, May 21 2013) 30 6 7290000002430000081000027000900301 (_Jayanta Basu_, May 21 2013) 31 1 311 32 2 1024321 33 1 331 34 33 a(n) is an 877-digit number (_Ray Chandler_, Apr 06 2014) 35 6 1838265625525218751500625428751225351 (_Jayanta Basu_, May 21 2013)
Crossrefs
Cf. A242645 (for a(11)).
Programs
-
Maple
for i from 1 to 23 do k := 0: c := true: while(c) do a := i^k:for j from k-1 to 0 by -1 do a := i^j+10^(floor(log(i^j)/log(10)+0.000001)+1)*a; end do: k := k+1: if(a>10^500) then a := -k; break: end if: if(isprime(a)) then c := false: end if: end do: b[i] := a: end do: seq(b[k],k=1..23); # Warning: program may not compute a(n). - N. J. A. Sloane, May 22 2014
-
Mathematica
Table[k=1; While[!PrimeQ[x=FromDigits[Flatten[IntegerDigits[Reverse[n^Range[0,k]]]]]] && k<30, k++]; If[k==30, x=0]; x, {n,34}] (* Jayanta Basu, May 21 2013 *) [Warning: program may not compute a(n). - N. J. A. Sloane, May 22 2014]
Extensions
Corrected by Lior Manor, May 07 2006
Entry revised by N. J. A. Sloane, May 22 2014 to reflect the fact that a(11) is presently unknown.
Comments