cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A028355 How the astronomical clock ("Orloj") in Prague would strike 1,2,3,...,24,25,.. (digits follow 12343212343... (A028356), n-th group adds to n).

Original entry on oeis.org

1, 2, 3, 4, 32, 123, 43, 2123, 432, 1234, 32123, 43212, 34321, 23432, 123432, 1234321, 2343212, 3432123, 4321234, 32123432, 123432123, 43212343, 2123432123, 432123432, 1234321234, 32123432123, 43212343212
Offset: 1

Views

Author

Keywords

Comments

This remarkable sequence is really a sequence of lists rather than numbers.

Examples

			1, 2, 3, 4, 3+2=5, 1+2+3=6, 4+3=7, 2+1+2+3=8, 4+3+2=9, 1+2+3+4=10, 3+2+1+2+3=11, 4+3+2+1+2=12, 3+4+3+2+1=13, 2+3+4+3+2=14, 1+2+3+4+3+2=15, ...
		

References

  • Zdenek Horsky, "Prazsky Orloj" ["The Astronomical Clock of Prague", in Czech], Panorama, Prague, 1988, pp. 76-78.

Crossrefs

Programs

  • Mathematica
    s[i_] := {1, 2, 3, 4, 3, 2}[[Mod[i, 6, 1]]];
    m[k_] := If[k == 1, 0, For[m0 = 1, True, m0++, If[k (k - 1)/2 == Sum[s[i], {i, 1, m0}], Return[m0]]]];
    n[k_] := For[n0 = m[k] + 1, True, n0++, If[Sum[s[i], {i, m[k] + 1, n0}] == k, Return[n0]]];
    a[k_] := a[k] = Table[s[i], {i, m[k] + 1, n[k]}] // FromDigits; Array[a, 27] (* Jean-François Alcover, Mar 14 2016 *)

Formula

Conjectures from Chai Wah Wu, Apr 18 2024: (Start)
a(n) = 1000001*a(n-15) - 1000000*a(n-30) for n > 30.
G.f.: x*(100000*x^28 + 200000*x^27 + 300000*x^26 + 400000*x^25 + 320000*x^24 + 123000*x^23 + 430000*x^22 + 212300*x^21 + 432000*x^20 + 123400*x^19 + 321230*x^18 + 432120*x^17 + 343210*x^16 + 234320*x^15 + 123432*x^14 + 23432*x^13 + 34321*x^12 + 43212*x^11 + 32123*x^10 + 1234*x^9 + 432*x^8 + 2123*x^7 + 43*x^6 + 123*x^5 + 32*x^4 + 4*x^3 + 3*x^2 + 2*x + 1)/(1000000*x^30 - 1000001*x^15 + 1). (End)

A028354 How the astronomical clock ("Orloj") in Prague strikes the hours (digits follow 12343212343... (A028356), n-th group adds to n).

Original entry on oeis.org

1, 2, 3, 4, 32, 123, 43, 2123, 432, 1234, 32123, 43212, 34321, 23432, 123432, 1234321, 2343212, 3432123, 4321234, 32123432, 123432123, 43212343, 2123432123, 432123432, 1, 2, 3, 4, 32, 123, 43, 2123, 432, 1234, 32123, 43212
Offset: 1

Views

Author

Keywords

Comments

There is a single bell, which to indicate 5 o'clock, say, strikes thrice then twice.

References

  • Zdenek Horsky, "Prazsky Orloj" ["The Astronomical Clock of Prague", in Czech], Panorama, Prague, 1988, pp. 76-78.

Crossrefs

Programs

  • Mathematica
    s[i_] := {1, 2, 3, 4, 3, 2}[[Mod[i, 6, 1]]]; m[k_] := If[ k == 1, 0, For[m0 = 1, True, m0++, If[k(k-1)/2 == Sum[ s[i], {i, 1, m0}], Return[m0]]]]; n[k_] := For[n0 = m[k]+1, True, n0++, If[Sum[s[i], {i, m[k]+1, n0}] == k, Return[n0]]]; a[k_] := a[k] = If[k>24, a[k-24], Table[ s[i], {i, m[k]+1, n[k]}] // FromDigits]; Array[a, 36] (* Jean-François Alcover, Mar 13 2016 *)

A321232 Length of n-th term of A321225.

Original entry on oeis.org

1, 1, 1, 3, 2, 4, 4, 4, 5, 6, 6, 6, 8, 7, 9, 9, 9, 10, 11, 11, 11, 13, 12, 14, 14, 14, 15, 16, 16, 16, 18, 17, 19, 19, 19, 20, 21, 21, 21, 23, 22, 24, 24, 24, 25, 26, 26, 26, 28, 27, 29, 29, 29, 30, 31, 31, 31, 33, 32, 34, 34, 34, 35, 36, 36, 36, 38, 37, 39, 39, 39, 40
Offset: 1

Views

Author

Seiichi Manyama, Oct 31 2018

Keywords

Examples

			n | A321225 | a(n)
--+---------+-----
1 |       1 |   1
2 |       2 |   1
3 |       3 |   1
4 |     211 |   3
5 |      23 |   2
6 |    2112 |   4
7 |    3211 |   4
8 |    2321 |   4
9 |   12321 |   5
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 0, 0, 0, 0, 0, 0, 1, -1}, {1, 1, 1, 3, 2, 4, 4, 4, 5, 6}, 100] (* Paolo Xausa, Apr 24 2024 *)

Formula

a(n) = a(n-9) + 5, for n > 9.
G.f.: x*(x^8 + 2*x^5 - x^4 + 2*x^3 + 1)/(x^10 - x^9 - x + 1). - Chai Wah Wu, Jan 06 2020
Showing 1-3 of 3 results.