1, 1, 2, 1, 2, 2, 1, 2, 3, 1, 1, 2, 3, 3, 1, 2, 1, 2, 4, 1, 1, 1, 1, 3, 2, 2, 3, 1, 2, 3, 4, 3, 2, 1, 1, 1, 1, 2, 4, 1, 4, 2, 1, 1, 1, 3, 1, 2, 1, 5, 2, 2, 1, 2, 3, 1, 3, 3, 2, 6, 1, 2, 2, 1, 3, 1, 3, 2, 5, 1, 1, 1, 1, 2, 2, 1, 4, 1, 4, 1, 4, 1, 4, 1, 2, 3, 3, 1, 2, 3, 3, 3, 3, 3, 1, 2, 1, 2, 1, 1, 2, 5, 1, 2, 2
Offset: 1
For a sum of 5, we have 1,2,2, which groups as 1, 2, 2+1, 2+2, 1+2+2, 1+2+2+1, .... This could be refined by splitting the second 2, to give the sequence 1,2,1,1; note that when this is grouped, the two 1's from the refinement always wind up in the same sum.
The array starts:
1;
1,2;
1,2,2;
1,2,3,1;
1,2,3,3;
1,2,1,2,4,1;
...
A028354
How the astronomical clock ("Orloj") in Prague strikes the hours (digits follow 12343212343... (A028356), n-th group adds to n).
Original entry on oeis.org
1, 2, 3, 4, 32, 123, 43, 2123, 432, 1234, 32123, 43212, 34321, 23432, 123432, 1234321, 2343212, 3432123, 4321234, 32123432, 123432123, 43212343, 2123432123, 432123432, 1, 2, 3, 4, 32, 123, 43, 2123, 432, 1234, 32123, 43212
Offset: 1
- Zdenek Horsky, "Prazsky Orloj" ["The Astronomical Clock of Prague", in Czech], Panorama, Prague, 1988, pp. 76-78.
-
s[i_] := {1, 2, 3, 4, 3, 2}[[Mod[i, 6, 1]]]; m[k_] := If[ k == 1, 0, For[m0 = 1, True, m0++, If[k(k-1)/2 == Sum[ s[i], {i, 1, m0}], Return[m0]]]]; n[k_] := For[n0 = m[k]+1, True, n0++, If[Sum[s[i], {i, m[k]+1, n0}] == k, Return[n0]]]; a[k_] := a[k] = If[k>24, a[k-24], Table[ s[i], {i, m[k]+1, n[k]}] // FromDigits]; Array[a, 36] (* Jean-François Alcover, Mar 13 2016 *)
A118383
Unrefined Orloj clock sequences; row n sums to n.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 4, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 2, 2, 3, 1, 2, 3, 1, 1, 2, 3, 1, 1, 2, 3, 4, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1, 4, 2, 1, 2, 3, 3, 1, 2, 3
Offset: 1
For a sum of 5, we have 1,2,2, which groups as 1, 2, 2+1, 2+2, 1+2+2, 1+2+2+1, .... This could be refined by splitting the second 2, to give the sequence 1,2,1,1; note that when this is grouped, the two 1's from the refinement always wind up in the same sum.
The array starts:
1;
1, 1;
1, 2;
1, 1, 1, 1;
1, 2, 2;
1, 2, 1, 2;
1, 2, 3, 1.
-
{Orloj(n) = my(found,tri,i,last,r); found = vector(n,i,0); found[n] = 1; tri = 0; for(i = 1, if(n%2==0,n-1,n\2), tri += i; if(tri > n, tri -= n); found[tri] = 1); last = 0; r = []; for(i = 1, n, if(found[i], r = concat(r, [i-last]); last = i)); r}
for (n=1,10,print(Orloj(n)))
A321225
Break the infinite word 1232112321... into chunks so that the sum of the digits in the n-th chunk is n.
Original entry on oeis.org
1, 2, 3, 211, 23, 2112, 3211, 2321, 12321, 123211, 232112, 321123, 21123211, 2321123, 211232112, 321123211, 232112321, 1232112321, 12321123211, 23211232112, 32112321123, 2112321123211, 232112321123, 21123211232112, 32112321123211, 23211232112321, 123211232112321
Offset: 1
1, 2, 3, 2+1+1=4, 2+3=5, 2+1+1+2=6, 3+2+1+1=7, 2+3+2+1=8, 1+2+3+2+1=9, ... .
-
getd(n) = {my(m = n % 5); if (!m, m = 1); [1, 2, 3, 2, 1][m];}
lista(nn) = {my(k = 1); for (n=1, nn, my (s = 0, list = List(), d); while (s != n, d = getd(k); listput(list, d); s += d; k++;); print1(fromdigits(Vec(list)), ", "););} \\ Michel Marcus, Nov 11 2018
A120449
Array by antidiagonals of all primitive Orloj clock striking sequences.
Original entry on oeis.org
1, 11, 1, 111, 2, 1, 1111, 12, 2, 1, 11111, 121, 21, 2, 1, 111111, 212, 22, 3, 2, 1, 1111111, 1212, 122, 112, 3, 2, 1, 11111111, 12121, 1221, 311, 31, 12, 11, 1, 111111111, 21212, 2212, 231, 23, 4, 3, 2, 1, 1111111111, 121212, 21221, 1231, 312
Offset: 1
The table starts:
1 11 111 1111 11111 111111 ...
1 2 12 121 212 1212 ...
1 2 21 22 122 1221 ...
1 2 3 112 311 231 ...
1 2 3 31 23 312 ...
Showing 1-8 of 8 results.
Comments