A068985 Decimal expansion of 1/e.
3, 6, 7, 8, 7, 9, 4, 4, 1, 1, 7, 1, 4, 4, 2, 3, 2, 1, 5, 9, 5, 5, 2, 3, 7, 7, 0, 1, 6, 1, 4, 6, 0, 8, 6, 7, 4, 4, 5, 8, 1, 1, 1, 3, 1, 0, 3, 1, 7, 6, 7, 8, 3, 4, 5, 0, 7, 8, 3, 6, 8, 0, 1, 6, 9, 7, 4, 6, 1, 4, 9, 5, 7, 4, 4, 8, 9, 9, 8, 0, 3, 3, 5, 7, 1, 4, 7, 2, 7, 4, 3, 4, 5, 9, 1, 9, 6, 4, 3, 7, 4, 6, 6, 2, 7
Offset: 0
Examples
1/e = 0.3678794411714423215955237701614608674458111310317678... = A135005/5.
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, Sections 1.3 and 5,23,3, pp. 14, 409.
- Anders Hald, A History of Probability and Statistics and Their Applications Before 1750, Wiley, NY, 1990 (Chapter 19).
- John Harris, Jeffry L. Hirst, and Michael Mossinghoff, Combinatorics and Graph Theory, Springer Science & Business Media, 2009, p. 161.
- L. B. W. Jolley, Summation of Series, Dover, 1961, eq. (103) on page 20.
- Traian Lalescu, Problem 579, Gazeta Matematică, Vol. 6 (1900-1901), p. 148.
- John Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 65.
- Manfred R. Schroeder, Number Theory in Science and Communication, Springer Science & Business Media, 2008, ch. 9.5 Derangements.
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 26, page 233.
- Walter D. Wallis and John C. George, Introduction to Combinatorics, CRC Press, 2nd ed. 2016, theorem 5.2 (The Derangement Series).
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 27.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- Washington Bomfim, Probabilities of connected random forests and derangements, Oct 31 2010.
- James Grime and Brady Haran, Derangements, Numberphile video, 2017.
- Peter J. Larcombe, Jack Sutton, and James Stanton, A note on the constant 1/e, Palest. J. Math. (2023) Vol. 12, No. 2, 609-619.
- Gérard P. Michon, Final Answers: Inclusion-Exclusion.
- Michael Penn, A cool, quick limit, YouTube video, 2022.
- Eric Weisstein's World of Mathematics, Derangement.
- Eric Weisstein's World of Mathematics, Factorial Sums.
- Eric Weisstein's World of Mathematics, Spherical Bessel Function of the First Kind.
- Eric Weisstein's World of Mathematics, Sultan's Dowry Problem.
- Eric Weisstein's World of Mathematics, e.
- OEIS Wiki, Number of derangements.
- Index entries for transcendental numbers.
Crossrefs
Programs
-
Mathematica
RealDigits[N[1/E,6! ]][[1]] (* Vladimir Joseph Stephan Orlovsky, Jun 18 2009 *)
-
PARI
default(realprecision, 110); exp(-1) \\ Rick L. Shepherd, Jan 11 2014
Formula
Equals 2*(1/3! + 2/5! + 3/7! + ...). [Jolley]
Equals 1 - Sum_{i >= 1} (-1)^(i - 1)/i!. [Michon]
Equals lim_{x->infinity} (1 - 1/x)^x. - Arkadiusz Wesolowski, Feb 17 2012
Equals j_1(i)/i = cos(i) + i*sin(i), where j_1(z) is the spherical Bessel function of the first kind and i = sqrt(-1). - Stanislav Sykora, Jan 11 2017
Equals Sum_{i>=0} ((-1)^i)/i!. - Maciej Kaniewski, Sep 10 2017
Equals Sum_{i>=0} ((-1)^i)(i^2+1)/i!. - Maciej Kaniewski, Sep 12 2017
From Peter Bala, Oct 23 2019: (Start)
The series representation 1/e = Sum_{k >= 0} (-1)^k/k! is the case n = 0 of the following series acceleration formulas:
1/e = n!*Sum_{k >= 0} (-1)^k/(k!*R(n,k)*R(n,k+1)), n = 0,1,2,..., where R(n,x) = Sum_{k = 0..n} (-1)^k*binomial(n,k)*k!*binomial(-x,k) are the row polynomials of A094816. (End)
1/e = 1 - Sum_{n >= 0} n!/(A(n)*A(n+1)), where A(n) = A000522(n). - Peter Bala, Nov 13 2019
Equals Integral_{x=0..1} x * sinh(x) dx. - Amiram Eldar, Aug 14 2020
Equals lim_{x->oo} (x!)^(1/x)/x. - L. Joris Perrenet, Dec 08 2020
Equals lim_{n->oo} (n+1)!^(1/(n+1)) - n!^(1/n) (Lalescu, 1900-1901). - Amiram Eldar, Mar 29 2022
Extensions
More terms from Rick L. Shepherd, Jan 11 2014
Comments