A069011 Triangle with T(n,k) = n^2 + k^2.
0, 1, 2, 4, 5, 8, 9, 10, 13, 18, 16, 17, 20, 25, 32, 25, 26, 29, 34, 41, 50, 36, 37, 40, 45, 52, 61, 72, 49, 50, 53, 58, 65, 74, 85, 98, 64, 65, 68, 73, 80, 89, 100, 113, 128, 81, 82, 85, 90, 97, 106, 117, 130, 145, 162, 100, 101, 104, 109, 116, 125, 136, 149, 164, 181, 200
Offset: 0
Examples
Triangle T(n,k) begins: 0; 1, 2; 4, 5, 8; 9, 10, 13, 18; 16, 17, 20, 25, 32; 25, 26, 29, 34, 41, 50; 36, 37, 40, 45, 52, 61, 72; 49, 50, 53, 58, 65, 74, 85, 98; 64, 65, 68, 73, 80, 89, 100, 113, 128; 81, 82, 85, 90, 97, 106, 117, 130, 145, 162; 100, 101, 104, 109, 116, 125, 136, 149, 164, 181, 200; ...
Links
- Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened
Crossrefs
Programs
-
Haskell
a069011 n k = a069011_tabl !! n !! k a069011_row n = a069011_tabl !! n a069011_tabl = map snd $ iterate f (1, [0]) where f (i, xs@(x:_)) = (i + 2, (x + i) : zipWith (+) xs [i + 1, i + 3 ..]) -- Reinhard Zumkeller, Oct 11 2013
-
Mathematica
Table[n^2 + k^2, {n, 0, 12}, {k, 0, n}] (* Paolo Xausa, Aug 07 2025 *)
Formula
T(n+1,k+1) = T(n,k) + 2*(n+k+1), k=0..n; T(n+1,0) = T(n,0) + 2*n + 1. - Reinhard Zumkeller, Oct 11 2013
G.f.: x*(1 + 2*y + 5*x^3*y^2 - x^2*y*(2 + 5*y) + x*(1 - 4*y + 2*y^2))/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Aug 04 2025
Comments