cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069011 Triangle with T(n,k) = n^2 + k^2.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 10, 13, 18, 16, 17, 20, 25, 32, 25, 26, 29, 34, 41, 50, 36, 37, 40, 45, 52, 61, 72, 49, 50, 53, 58, 65, 74, 85, 98, 64, 65, 68, 73, 80, 89, 100, 113, 128, 81, 82, 85, 90, 97, 106, 117, 130, 145, 162, 100, 101, 104, 109, 116, 125, 136, 149, 164, 181, 200
Offset: 0

Views

Author

Henry Bottomley, Apr 02 2002

Keywords

Comments

For any i,j >=0 a(i)*a(j) is a member of this sequence, since (a^2 + b^2)*(c^2 + d^2) = (a*c + b*d)^2 + (a*d - b*c)^2. - Boris Putievskiy, May 05 2013
A227481(n) = number of squares in row n. - Reinhard Zumkeller, Oct 11 2013
Norm of the complex numbers n +- i*k and k +- i*n, where i denotes the imaginary unit. - Stefano Spezia, Aug 07 2025

Examples

			Triangle T(n,k) begins:
    0;
    1,   2;
    4,   5,   8;
    9,  10,  13,  18;
   16,  17,  20,  25,  32;
   25,  26,  29,  34,  41,  50;
   36,  37,  40,  45,  52,  61,  72;
   49,  50,  53,  58,  65,  74,  85,  98;
   64,  65,  68,  73,  80,  89, 100, 113, 128;
   81,  82,  85,  90,  97, 106, 117, 130, 145, 162;
  100, 101, 104, 109, 116, 125, 136, 149, 164, 181, 200;
  ...
		

Crossrefs

Cf. A001481 for terms in this sequence, A000161 for number of times each term appears, A048147 for square array.
Column k=0 gives A000290.
Main diagonal gives A001105.
Row sums give A132124.
T(2n,n) gives A033429.

Programs

  • Haskell
    a069011 n k = a069011_tabl !! n !! k
    a069011_row n = a069011_tabl !! n
    a069011_tabl = map snd $ iterate f (1, [0]) where
       f (i, xs@(x:_)) = (i + 2, (x + i) : zipWith (+) xs [i + 1, i + 3 ..])
    -- Reinhard Zumkeller, Oct 11 2013
  • Mathematica
    Table[n^2 + k^2, {n, 0, 12}, {k, 0, n}] (* Paolo Xausa, Aug 07 2025 *)

Formula

T(n+1,k+1) = T(n,k) + 2*(n+k+1), k=0..n; T(n+1,0) = T(n,0) + 2*n + 1. - Reinhard Zumkeller, Oct 11 2013
G.f.: x*(1 + 2*y + 5*x^3*y^2 - x^2*y*(2 + 5*y) + x*(1 - 4*y + 2*y^2))/((1 - x)^3*(1 - x*y)^3). - Stefano Spezia, Aug 04 2025