cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A227481 Number of squares in row n of the triangle in A069011.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 3, 1, 2, 1, 2, 3, 1, 1, 4, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 5, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 5, 1, 1, 2, 2, 2, 1, 1, 4, 1, 1, 1, 5, 1
Offset: 0

Views

Author

Reinhard Zumkeller, Oct 11 2013

Keywords

Comments

a(A074235(n)) = 1; a(A009023(n)) > 1.

Programs

  • Haskell
    a227481 = sum . map a010052 . a069011_row

Formula

a(n) = sum(A010052(A069011(n,k)): k=0..n).

A132124 a(n) = n*(n+1)*(8*n + 1)/6.

Original entry on oeis.org

0, 3, 17, 50, 110, 205, 343, 532, 780, 1095, 1485, 1958, 2522, 3185, 3955, 4840, 5848, 6987, 8265, 9690, 11270, 13013, 14927, 17020, 19300, 21775, 24453, 27342, 30450, 33785, 37355, 41168, 45232, 49555, 54145, 59010, 64158, 69597, 75335, 81380, 87740, 94423
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 12 2007

Keywords

Comments

Convolution of the sequences (0,3,5,0,0,0,...) and (binomial(n+3, 3)), n >= 0. - Emeric Deutsch, Aug 30 2007

Crossrefs

Programs

  • Maple
    seq((1/6)*n*(n+1)*(8*n+1),n=0..40); # Emeric Deutsch, Aug 30 2007
  • Mathematica
    a[n_] := n*(n + 1)*(8*n + 1)/6; Array[a, 42, 0] (* Amiram Eldar, May 20 2023 *)

Formula

a(n) = A132121(n,2) for n > 1.
G.f.: x*(3+5*x)/(1-x)^4. - Emeric Deutsch, Aug 30 2007
From Bruno Berselli, Nov 25 2010: (Start)
a(n) = n*A014105(n) - A016061(n-1), since A016061(n-1) = Sum_{k=0..n-1} A014105(k) (n > 0).
Also a(n) = A002412(n) + A006331(n) = A007585(n) + A002378(n). (End)
Sum_{n>=1} 1/a(n) = 54 - 24*(sqrt(2)+1)*Pi/7 - 24*(sqrt(2)+8)*log(2)/7 + 48*sqrt(2)*log(2-sqrt(2))/7. - Amiram Eldar, May 20 2023
E.g.f.: exp(x)*x*(18 + 33*x + 8*x^2)/6. - Stefano Spezia, Feb 21 2024

A143166 a(n) = n*(8*n^2 + 1)/3.

Original entry on oeis.org

0, 3, 22, 73, 172, 335, 578, 917, 1368, 1947, 2670, 3553, 4612, 5863, 7322, 9005, 10928, 13107, 15558, 18297, 21340, 24703, 28402, 32453, 36872, 41675, 46878, 52497, 58548, 65047, 72010, 79453, 87392, 95843, 104822, 114345, 124428, 135087, 146338, 158197
Offset: 0

Views

Author

Wolfdieter Lang, Sep 15 2008

Keywords

Comments

One fourth of the sum of p^2 + q^2 over the discrete square frame of length 2*n centered around the origin (called the 2n-frame). See the Wolfdieter Lang link below.
Because the summation over p*q becomes zero due to symmetry, this is also the sum over, e.g., (p+q)^2.
The total number of sites (vertices) s(n) of a square around (0,0) with length 2*n, is (2*n+1)^2. The 2n-frame borders 8*n = s(n) - s(n-1) sites, for n>=1. For n=0 only the site (0,0) is considered.
The author was led to consider such sums by a (much more difficult) question asked by R. Thomale.
Convolution of 4*j-1 with 4*j-3, j=1..n. For n=4: [1,5,9,13] convolved with [3,7,11,15] gives a(4) = 1*(15) + 5*(11) + 9*(7) + 13*(3) = 172. - J. M. Bergot, May 27 2017

Examples

			The total sums S(n) are [0, 12, 100, 392, 1080, 2420, 4732, 8400, 13872, 21660, 32340, ...].
The 2n-frame sums are 4*a(n) = [0, 12, 88, 292, 688, 1340, 2312, 3668, 5472, 7788, 10680, 14212, 18448, 23452, 29288, 36020, 43712, 52428, 62232, 73188, 85360]. The sum is over 8*n numbers.
For n=1 the 8 numbers of the 2-frame are 2,1,2; 1,1; 2,1,2, summing to 4*a(1)=12.
		

Crossrefs

Programs

Formula

a(n) = (1/4)*(S(n) - S(n-1)), with a(0)=0 and S(n):=sum(sum(p^2+q^2,p=-n..+n),q=-n..+n) = 2*sum(sum((p^2,p=-n..+n), q=-n..+n) = 2*sum(p^2,p=-n..+n)*sum(1,q=-n..n) = 2*2*(n*(n+1)*(2*n+1))/6)*(2*n+1) = (2/3)*n*(n+1)*(2*n+1)^2.
a(n) = n*(8*n^2 + 1)/3.
G.f.: x*(3 + 10*x + 3*x^2)/(1-x)^4. - Vincenzo Librandi, Feb 05 2014
a(n) = T(n, 0) + 2*(Sum_{k=1..n-1}T(n,k)) + T(n,k), with the triangle T(n, k) = A069011(n, k) = n^2 + k^2. - Wolfdieter Lang, Aug 15 2019
From Elmo R. Oliveira, Aug 07 2025: (Start)
E.g.f.: exp(x)*x*(9 + 24*x + 8*x^2)/3.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = A118465(n)/3. (End)

A105125 Triangle read by rows: T(n,k) = n^3 + k^3, n >= 0, 0 <= k <= n.

Original entry on oeis.org

0, 1, 2, 8, 9, 16, 27, 28, 35, 54, 64, 65, 72, 91, 128, 125, 126, 133, 152, 189, 250, 216, 217, 224, 243, 280, 341, 432, 343, 344, 351, 370, 407, 468, 559, 686, 512, 513, 520, 539, 576, 637, 728, 855, 1024, 729, 730, 737, 756, 793, 854, 945, 1072, 1241, 1458, 1000, 1001, 1008, 1027
Offset: 0

Views

Author

Roger L. Bagula, Apr 09 2005

Keywords

Examples

			Triangle begins (modulo 2 plot is a checkerboard):
  {0}
  {1, 2}
  {8, 9, 16}
  {27, 28, 35, 54}
  {64, 65, 72, 91, 128}
  {125, 126, 133, 152, 189, 250}
  ...
The identity for T(2, 1): 9 = 3*(3^2 + 3*1^2)/4 = 3*12/4 = 9. - _Wolfdieter Lang_, May 15 2015
		

Crossrefs

Cf. A069011. Different from A004999. A257238, A025581, A051162.

Programs

  • Maple
    seq(seq(n^3+k^3,k=0..n),n=0..10); # Robert Israel, May 15 2015
  • Mathematica
    f[n_, m_, p_] := n^p + m^p p = 3 a = Table[Table[f[n, m, p], {n, 0, m}], {m, 0, 20}] aa = Flatten[a]

Formula

T(n,k) = n^3 + k^3, n >= 0, 0 <= k <= n.
T(n, k) = A051162(n, k)*(A051162(n, k)^2 + 3* A025581(n, k)^2)/4. See the comment on A051162 for this identity. - Wolfdieter Lang, May 15 2015
G.f. for triangle: -(9*x^5*y^3 - 8*x^4*y^3 - x^4*y^2 + 7*x^3*y^3 - 36*x^3*y^2 - 2*x^2*y^3 + 5*x^3*y + 27*x^2*y^2 + 12*x^2*y - 8*x*y^2 - x^2 + 3*x*y - 4*x - 2*y - 1)*x/((x-1)^4*(x*y-1)^4). - Robert Israel, May 15 2015

A372667 Norm i^2+j^2+k^2 of (i,j,k) for 0 <= k <= j <= i.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 8, 9, 12, 9, 10, 11, 13, 14, 17, 18, 19, 22, 27, 16, 17, 18, 20, 21, 24, 25, 26, 29, 34, 32, 33, 36, 41, 48, 25, 26, 27, 29, 30, 33, 34, 35, 38, 43, 41, 42, 45, 50, 57, 50, 51, 54, 59, 66, 75, 36, 37, 38, 40, 41, 44, 45, 46, 49, 54, 52, 53
Offset: 0

Views

Author

A. Timothy Royappa, May 09 2024

Keywords

Comments

In crystallography, these triples (i,j,k) can be interpreted as Miller indices, which can be sorted into a list: (0 0 0), (1 0 0), (1 1 0), (1 1 1), (2 0 0), (2 1 0), (2 1 1), (2 2 0), (2 2 1), (2 2 2), (3 0 0), (3 1 0), (3 1 1), (3 2 0), etc.

Examples

			The first few triples are:
   0, 0, 0
   1, 0, 0
   1, 1, 0
   1, 1, 1
   2, 0, 0
   2, 1, 0
   2, 1, 1
   2, 2, 0
   2, 2, 1
   2, 2, 2
   3, 0, 0
   ...
		

References

  • C. Suryanarayana and M. Grant Norton, X-Ray Diffraction - A Practical Approach, Springer Science + Business Media, 1998, p. 83.

Crossrefs

The table of triples forms A331195.
Cf. A070770, A069011 (2-dimensional analog), A004215 (complement to this sequence)

Programs

  • Maple
    a:=[];
    for i from 0 to 10 do for j from 0 to i do for k from 0 to j do
    a:=[op(a),i^2+j^2+k^2]; od: od: od: a; # N. J. A. Sloane, Jun 03 2024
  • Python
    print([i**2 + j**2 + k**2 for i in range(7) for j in range(i+1) for k in range(j+1)]) # Andrey Zabolotskiy, May 09 2024

Extensions

More terms from Andrey Zabolotskiy, May 09 2024

A386823 Triangle read by rows: T(n,k) = numerator((n^2 - k^2)/(n^2 + k^2)), where 0 <= k < n.

Original entry on oeis.org

1, 1, 3, 1, 4, 5, 1, 15, 3, 7, 1, 12, 21, 8, 9, 1, 35, 4, 3, 5, 11, 1, 24, 45, 20, 33, 12, 13, 1, 63, 15, 55, 3, 39, 7, 15, 1, 40, 77, 4, 65, 28, 5, 16, 17, 1, 99, 12, 91, 21, 3, 8, 51, 9, 19, 1, 60, 117, 56, 105, 48, 85, 36, 57, 20, 21, 1, 143, 35, 15, 4, 119, 3, 95, 5, 7, 11, 23
Offset: 1

Views

Author

Stefano Spezia, Aug 04 2025

Keywords

Examples

			The triangle of the fractions begins as:
  1/1;
  1/1,   3/5;
  1/1,   4/5,  5/13;
  1/1, 15/17,   3/5,  7/25;
  1/1, 12/13, 21/29,  8/17,  9/41;
  1/1, 35/37,   4/5,   3/5,  5/13, 11/61;
  1/1, 24/25, 45/53, 20/29, 33/65, 12/37, 13/85;
  ...
		

Crossrefs

Cf. A000012 (k=0), A000290, A005408, A066830 (k=1), A069011, A094728, A386824 (denominators).

Programs

  • Mathematica
    T[n_,k_]:=Numerator[(n^2-k^2)/(n^2+k^2)]; Table[T[n,k],{n,12},{k,0,n-1}]//Flatten

Formula

T(n,n-1) = A005804(n-1).

A386824 Triangle read by rows: T(n,k) = denominator((n^2 - k^2)/(n^2 + k^2)), where 0 <= k < n.

Original entry on oeis.org

1, 1, 5, 1, 5, 13, 1, 17, 5, 25, 1, 13, 29, 17, 41, 1, 37, 5, 5, 13, 61, 1, 25, 53, 29, 65, 37, 85, 1, 65, 17, 73, 5, 89, 25, 113, 1, 41, 85, 5, 97, 53, 13, 65, 145, 1, 101, 13, 109, 29, 5, 17, 149, 41, 181, 1, 61, 125, 65, 137, 73, 157, 85, 185, 101, 221
Offset: 1

Views

Author

Stefano Spezia, Aug 04 2025

Keywords

Examples

			The triangle of the fractions begins as:
  1/1;
  1/1,   3/5;
  1/1,   4/5,  5/13;
  1/1, 15/17,   3/5,  7/25;
  1/1, 12/13, 21/29,  8/17,  9/41;
  1/1, 35/37,   4/5,   3/5,  5/13, 11/61;
  1/1, 24/25, 45/53, 20/29, 33/65, 12/37, 13/85;
  ...
		

Crossrefs

Cf. A000012 (k=0), A000290, A001844, A069011, A094728, A228564 (k=1), A243883 (k=2), A386823 (numerators).

Programs

  • Mathematica
    T[n_,k_]:=Denominator[(n^2-k^2)/(n^2+k^2)]; Table[T[n,k],{n,11},{k,0,n-1}]//Flatten

Formula

T(n,n-1) = A001844(n-1).

A162868 Least common multiple of all squares and all sums of two squares up to n^2 + n^2.

Original entry on oeis.org

1, 2, 40, 4680, 1591200, 1891936800, 4270101357600, 11089453225687200, 32565776278494961756800, 28429922691126101613686400, 42204464874461454985621846571472000
Offset: 0

Views

Author

Carl R. White, Jul 15 2009

Keywords

Comments

Also the least common multiple of all rows of triangle A069011 up to the n-th row.
lcm(0) is taken to be 1, which follows from 0! = 1.

Examples

			a(3) = lcm(0^2+0^2; 0^2+1^2, 1^2+1^2; 0^2+2^2, 1^2+2^2, 2^2+2^2; 0^2+3^2, 1^2+3^2, 2^2+3^2, 3^2+3^2) = lcm(0; 1, 2; 4, 5, 8; 9, 10, 13, 18) = 4680.
		

Crossrefs

Programs

  • PARI
    a(n) = {mcl = 1; for (x = 0, n, for (y = 0, n, if (v = x^2+y^2, mcl = lcm(mcl, v)););); mcl;} \\ Michel Marcus, Sep 03 2013

Formula

a(n) = lcm({ x,y:N | 0 <= x <= y <= n; x^2+y^2 })
Showing 1-8 of 8 results.