cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069075 a(n) = (4*n^2 - 1)^2.

Original entry on oeis.org

1, 9, 225, 1225, 3969, 9801, 20449, 38025, 65025, 104329, 159201, 233289, 330625, 455625, 613089, 808201, 1046529, 1334025, 1677025, 2082249, 2556801, 3108169, 3744225, 4473225, 5303809, 6245001, 7306209, 8497225, 9828225, 11309769
Offset: 0

Views

Author

Benoit Cloitre, Apr 05 2002

Keywords

Comments

Products of squares of 2 successive odd numbers. - Peter Munn, Nov 17 2019

References

  • L. B. W. Jolley, Summation of Series, Dover, 1961.
  • Konrad Knopp, Theory and application of infinite series, Dover, 1990, p. 269.

Crossrefs

Programs

  • Mathematica
    (4*Range[0,30]^2-1)^2 (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,9,225,1225,3969},30] (* Harvey P. Dale, Feb 23 2018 *)

Formula

Sum_{n>=1} 1/a(n) = (Pi^2 - 8)/16 = 0.1168502750680... (A123092) [Jolley eq. 247]
G.f.: (-1 - 4*x - 190*x^2 - 180*x^3 - 9*x^4) / (x-1)^5. - R. J. Mathar, Oct 03 2011
a(n) = A000466(n)^2. - Peter Munn, Nov 17 2019
E.g.f.: exp(x)*(1 + 8*x + 104*x^2 + 96*x^3 + 16*x^4). - Stefano Spezia, Nov 17 2019
Sum_{n>=0} (-1)^n/a(n) = Pi/8 + 1/2. - Amiram Eldar, Feb 08 2022