cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069125 a(n) = (11*n^2 - 11*n + 2)/2.

Original entry on oeis.org

1, 12, 34, 67, 111, 166, 232, 309, 397, 496, 606, 727, 859, 1002, 1156, 1321, 1497, 1684, 1882, 2091, 2311, 2542, 2784, 3037, 3301, 3576, 3862, 4159, 4467, 4786, 5116, 5457, 5809, 6172, 6546, 6931, 7327, 7734, 8152, 8581, 9021, 9472, 9934, 10407, 10891, 11386, 11892
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Centered hendecagonal (11-gonal) numbers. - Omar E. Pol, Oct 03 2011
Numbers of the form (2*m+1)^2 + k*m*(m+1)/2: in this case is k=3. See also A254963. - Bruno Berselli, Feb 11 2015

Examples

			a(5)=111 because 111 = (11*5^2 - 11*5 + 2)/2 = (275 - 55 + 2)/2 = 222/2.
		

Crossrefs

Programs

Formula

a(n) = 1 + Sum_{j=0..n-1} (11*j). - Xavier Acloque, Oct 22 2003
Binomial transform of [1, 11, 11, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 11, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = 11*n + a(n-1) - 11 with n > 1, a(1)=1. - Vincenzo Librandi, Aug 08 2010
G.f.: -x*(1+9*x+x^2)/(x-1)^3. - R. J. Mathar, Jun 05 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=12, a(2)=34. - Harvey P. Dale, Jun 25 2011
a(n) = A152740(n-1) + 1. - Omar E. Pol, Oct 03 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi*tan(sqrt(3/11)*Pi/2)/sqrt(33).
Sum_{n>=1} a(n)/n! = 13*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 13/(2*e) - 1. (End)
a(n) = A003154(n) - A000217(n-1). - Leo Tavares, Mar 29 2022
E.g.f.: exp(x)*(1 + 11*x^2/2) - 1. - Elmo R. Oliveira, Oct 18 2024

Extensions

More terms from Harvey P. Dale, Jun 25 2011
Name rewritten by Bruno Berselli, Feb 11 2015