cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069126 Centered 13-gonal numbers.

Original entry on oeis.org

1, 14, 40, 79, 131, 196, 274, 365, 469, 586, 716, 859, 1015, 1184, 1366, 1561, 1769, 1990, 2224, 2471, 2731, 3004, 3290, 3589, 3901, 4226, 4564, 4915, 5279, 5656, 6046, 6449, 6865, 7294, 7736, 8191, 8659, 9140, 9634, 10141, 10661, 11194
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Centered tridecagonal numbers or centered triskaidecagonal numbers. - Omar E. Pol, Oct 03 2011

Examples

			a(5) = 131 because 131 = (13*5^2 - 13*5 + 2)/2 = (325 - 65 + 2)/2 = 262/2 = 131.
		

Crossrefs

Programs

  • Mathematica
    FoldList[#1 + #2 &, 1, 13 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *)
    LinearRecurrence[{3,-3,1},{1,14,40},60] (* Harvey P. Dale, Jan 20 2014 *)
    With[{nn=50},Total/@Thread[{PolygonalNumber[13,Range[nn]],Range[0,nn-1]^2}]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Aug 29 2016 *)
  • PARI
    a(n)=13*n(n-1)/2+1 \\ Charles R Greathouse IV, Oct 07 2015

Formula

a(n) = (13n^2 - 13n + 2)/2.
Binomial transform of [1, 13, 13, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 13, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = 13*n+a(n-1)-13 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: -x*(1+11*x+x^2) / (x-1)^3. - R. J. Mathar, Feb 04 2011
a(n) = A152741(n-1) + 1. - Omar E. Pol, Oct 03 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi*tan(sqrt(5/13)*Pi/2)/sqrt(65).
Sum_{n>=1} a(n)/n! = 15*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 15/(2*e) - 1. (End)
E.g.f.: exp(x)*(1 + 13*x^2/2) - 1. - Stefano Spezia, May 15 2022