A069126 Centered 13-gonal numbers.
1, 14, 40, 79, 131, 196, 274, 365, 469, 586, 716, 859, 1015, 1184, 1366, 1561, 1769, 1990, 2224, 2471, 2731, 3004, 3290, 3589, 3901, 4226, 4564, 4915, 5279, 5656, 6046, 6449, 6865, 7294, 7736, 8191, 8659, 9140, 9634, 10141, 10661, 11194
Offset: 1
Examples
a(5) = 131 because 131 = (13*5^2 - 13*5 + 2)/2 = (325 - 65 + 2)/2 = 262/2 = 131.
Links
- Ivan Panchenko, Table of n, a(n) for n = 1..1000
- Eric Weisstein's World of Mathematics, Centered Polygonal Numbers
- Index entries for sequences related to centered polygonal numbers
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1)
Programs
-
Mathematica
FoldList[#1 + #2 &, 1, 13 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *) LinearRecurrence[{3,-3,1},{1,14,40},60] (* Harvey P. Dale, Jan 20 2014 *) With[{nn=50},Total/@Thread[{PolygonalNumber[13,Range[nn]],Range[0,nn-1]^2}]] (* Requires Mathematica version 11 or later *) (* Harvey P. Dale, Aug 29 2016 *)
-
PARI
a(n)=13*n(n-1)/2+1 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = (13n^2 - 13n + 2)/2.
Binomial transform of [1, 13, 13, 0, 0, 0, ...]; Narayana transform (A001263) of [1, 13, 0, 0, 0, ...]. - Gary W. Adamson, Dec 29 2007
a(n) = 13*n+a(n-1)-13 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: -x*(1+11*x+x^2) / (x-1)^3. - R. J. Mathar, Feb 04 2011
a(n) = A152741(n-1) + 1. - Omar E. Pol, Oct 03 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = 2*Pi*tan(sqrt(5/13)*Pi/2)/sqrt(65).
Sum_{n>=1} a(n)/n! = 15*e/2 - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 15/(2*e) - 1. (End)
E.g.f.: exp(x)*(1 + 13*x^2/2) - 1. - Stefano Spezia, May 15 2022
Comments