cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A101321 Table T(n,m) = 1 + n*m*(m+1)/2 read by antidiagonals: centered polygonal numbers.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 7, 7, 4, 1, 1, 11, 13, 10, 5, 1, 1, 16, 21, 19, 13, 6, 1, 1, 22, 31, 31, 25, 16, 7, 1, 1, 29, 43, 46, 41, 31, 19, 8, 1, 1, 37, 57, 64, 61, 51, 37, 22, 9, 1, 1, 46, 73, 85, 85, 76, 61, 43, 25, 10, 1, 1, 56, 91, 109, 113, 106, 91, 71, 49, 28, 11, 1, 1, 67
Offset: 0

Views

Author

Eugene McDonnell (eemcd(AT)mac.com), Dec 24 2004

Keywords

Comments

Row n gives the centered figurate numbers of the n-gon.
Antidiagonal sums are in A101338.

Examples

			The upper left corner of the infinite array T is
|0| 1   1   1   1   1   1   1   1   1   1 ... A000012
|1| 1   2   4   7  11  16  22  29  37  46 ... A000124
|2| 1   3   7  13  21  31  43  57  73  91 ... A002061
|3| 1   4  10  19  31  46  64  85 109 136 ... A005448
|4| 1   5  13  25  41  61  85 113 145 181 ... A001844
|5| 1   6  16  31  51  76 106 141 181 226 ... A005891
|6| 1   7  19  37  61  91 127 169 217 271 ... A003215
|7| 1   8  22  43  71 106 148 197 253 316 ... A069099
|8| 1   9  25  49  81 121 169 225 289 361 ... A016754
|9| 1  10  28  55  91 136 190 253 325 406 ... A060544
		

Crossrefs

Programs

Formula

T(n,2) = A016777(n). T(n,3) = A016921(n). T(n,4) = A017281(n).
T(10,m) = A062786(m+1).
T(11,m) = A069125(m+1).
T(12,m) = A003154(m+1).
T(13,m) = A069126(m+1).
T(14,m) = A069127(m+1).
T(15,m) = A069128(m+1).
T(16,m) = A069129(m+1).
T(17,m) = A069130(m+1).
T(18,m) = A069131(m+1).
T(19,m) = A069132(m+1).
T(20,m) = A069133(m+1).
T(n+1,m) = T(n,m) + m*(m+1)/2. - Gary W. Adamson and Michel Marcus, Oct 13 2015

Extensions

Edited by R. J. Mathar, Oct 21 2009

A069190 Centered 24-gonal numbers.

Original entry on oeis.org

1, 25, 73, 145, 241, 361, 505, 673, 865, 1081, 1321, 1585, 1873, 2185, 2521, 2881, 3265, 3673, 4105, 4561, 5041, 5545, 6073, 6625, 7201, 7801, 8425, 9073, 9745, 10441, 11161, 11905, 12673, 13465, 14281, 15121, 15985, 16873, 17785, 18721, 19681, 20665, 21673
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 10 2002

Keywords

Comments

Sequence found by reading the line from 1, in the direction 1, 25, ..., in the square spiral whose vertices are the generalized octagonal numbers A001082. Semi-axis opposite to A135453 in the same spiral. - Omar E. Pol, Sep 16 2011

Examples

			a(5) = 241 because 12*5^2 - 12*5 + 1 = 300 - 60 + 1 = 241.
		

Crossrefs

Programs

Formula

a(n) = 12*n^2 - 12*n + 1.
a(n) = 24*n + a(n-1) - 24 with a(1)=1. - Vincenzo Librandi, Aug 08 2010
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=25, a(3)=73. - Harvey P. Dale, Jul 17 2011
G.f.: x*(1+22*x+x^2)/(1-x)^3. - Harvey P. Dale, Jul 17 2011
Binomial transform of [1, 24, 24, 0, 0, 0, ...] and Narayana transform (cf. A001263) of [1, 24, 0, 0, 0, ...]. - Gary W. Adamson, Jul 26 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(Pi/sqrt(6))/(4*sqrt(6)).
Sum_{n>=1} a(n)/n! = 13*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 13/e - 1. (End)
E.g.f.: exp(x)*(1 + 12*x^2) - 1. - Stefano Spezia, May 31 2022

Extensions

More terms from Harvey P. Dale, Jul 17 2011

A195045 Concentric 13-gonal numbers.

Original entry on oeis.org

0, 1, 13, 27, 52, 79, 117, 157, 208, 261, 325, 391, 468, 547, 637, 729, 832, 937, 1053, 1171, 1300, 1431, 1573, 1717, 1872, 2029, 2197, 2367, 2548, 2731, 2925, 3121, 3328, 3537, 3757, 3979, 4212, 4447, 4693, 4941, 5200, 5461, 5733, 6007, 6292, 6579, 6877, 7177, 7488, 7801, 8125
Offset: 0

Views

Author

Omar E. Pol, Sep 27 2011

Keywords

Comments

Also concentric tridecagonal numbers or concentric triskaidecagonal numbers.
Partial sums of A175886. - Reinhard Zumkeller, Jan 07 2012

Crossrefs

Programs

Formula

a(n) = 13*n^2/4+9*((-1)^n-1)/8.
From R. J. Mathar, Sep 28 2011: (Start)
G.f.: -x*(1+11*x+x^2) / ( (1+x)*(x-1)^3 ).
a(n)+a(n+1) = A069126(n+1). (End)
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>3. - Wesley Ivan Hurt, Nov 22 2015
Sum_{n>=1} 1/a(n) = Pi^2/78 + tan(3*Pi/(2*sqrt(13)))*Pi/(3*sqrt(13)). - Amiram Eldar, Jan 16 2023

A262221 a(n) = 25*n*(n + 1)/2 + 1.

Original entry on oeis.org

1, 26, 76, 151, 251, 376, 526, 701, 901, 1126, 1376, 1651, 1951, 2276, 2626, 3001, 3401, 3826, 4276, 4751, 5251, 5776, 6326, 6901, 7501, 8126, 8776, 9451, 10151, 10876, 11626, 12401, 13201, 14026, 14876, 15751, 16651, 17576, 18526, 19501, 20501, 21526, 22576, 23651
Offset: 0

Views

Author

Bruno Berselli, Sep 15 2015

Keywords

Comments

Also centered 25-gonal (or icosipentagonal) numbers.
This is the case k=25 of the formula (k*n*(n+1) - (-1)^k + 1)/2. See table in Links section for similar sequences.
For k=2*n, the formula shown above gives A011379.
Primes in sequence: 151, 251, 701, 1951, 3001, 4751, 10151, 12401, ...

References

  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 51 (23rd row of the table).

Crossrefs

Cf. centered polygonal numbers listed in A069190.
Similar sequences of the form (k*n*(n+1) - (-1)^k + 1)/2 with -1 <= k <= 26: A000004, A000124, A002378, A005448, A005891, A028896, A033996, A035008, A046092, A049598, A060544, A064200, A069099, A069125, A069126, A069128, A069130, A069132, A069174, A069178, A080956, A124080, A163756, A163758, A163761, A164136, A173307.

Programs

  • Magma
    [25*n*(n+1)/2+1: n in [0..50]];
  • Mathematica
    Table[25 n (n + 1)/2 + 1, {n, 0, 50}]
    25*Accumulate[Range[0,50]]+1 (* or *) LinearRecurrence[{3,-3,1},{1,26,76},50] (* Harvey P. Dale, Jan 29 2023 *)
  • PARI
    vector(50, n, n--; 25*n*(n+1)/2+1)
    
  • Sage
    [25*n*(n+1)/2+1 for n in (0..50)]
    

Formula

G.f.: (1 + 23*x + x^2)/(1 - x)^3.
a(n) = a(-n-1) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = A123296(n) + 1.
a(n) = A000217(5*n+2) - 2.
a(n) = A034856(5*n+1).
a(n) = A186349(10*n+1).
a(n) = A054254(5*n+2) with n>0, a(0)=1.
a(n) = A000217(n+1) + 23*A000217(n) + A000217(n-1) with A000217(-1)=0.
Sum_{i>=0} 1/a(i) = 1.078209111... = 2*Pi*tan(Pi*sqrt(17)/10)/(5*sqrt(17)).
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=0} a(n)/n! = 77*e/2.
Sum_{n>=0} (-1)^(n+1) * a(n)/n! = 23/(2*e). (End)
E.g.f.: exp(x)*(2 + 50*x + 25*x^2)/2. - Elmo R. Oliveira, Dec 24 2024

A152741 13 times triangular numbers.

Original entry on oeis.org

0, 13, 39, 78, 130, 195, 273, 364, 468, 585, 715, 858, 1014, 1183, 1365, 1560, 1768, 1989, 2223, 2470, 2730, 3003, 3289, 3588, 3900, 4225, 4563, 4914, 5278, 5655, 6045, 6448, 6864, 7293, 7735, 8190, 8658, 9139, 9633, 10140, 10660, 11193, 11739, 12298, 12870
Offset: 0

Views

Author

Omar E. Pol, Dec 12 2008

Keywords

Comments

Sequence found by reading the line from 0, in the direction 0, 13,... and the same line from 0, in the direction 0, 39,..., in the square spiral whose vertices are the generalized 15-gonal numbers. - Omar E. Pol, Oct 03 2011
Sum of the numbers from 6n to 7n. - Wesley Ivan Hurt, Dec 22 2015

Crossrefs

Programs

Formula

a(n) = 13*n*(n+1)/2 = 13 * A000217(n).
a(n) = a(n-1)+13*n (with a(0)=0). - Vincenzo Librandi, Nov 26 2010
a(n) = A069126(n+1) - 1. - Omar E. Pol, Oct 03 2011
From Wesley Ivan Hurt, Dec 22 2015: (Start)
G.f.: 13*x/(1-x)^3.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>2.
a(n) = Sum_{i=6n..7n} i. (End)
E.g.f.: 13*x*(2+x)*exp(x)/2. - G. C. Greubel, Sep 01 2018
From Amiram Eldar, Feb 21 2023: (Start)
Sum_{n>=1} 1/a(n) = 2/13.
Sum_{n>=1} (-1)^(n+1)/a(n) = (4*log(2) - 2)/13.
Product_{n>=1} (1 - 1/a(n)) = -(13/(2*Pi))*cos(sqrt(21/13)*Pi/2).
Product_{n>=1} (1 + 1/a(n)) = (13/(2*Pi))*cos(sqrt(5/13)*Pi/2). (End)

A262493 Centered 13-gonal (or tridecagonal) primes.

Original entry on oeis.org

79, 131, 859, 2731, 5279, 6449, 8191, 10141, 15289, 17239, 20021, 20749, 23011, 26209, 38039, 41081, 45319, 46411, 50909, 54419, 59281, 65651, 70981, 76519, 80809, 86711, 92821, 99139, 126491, 128311, 135721, 159199, 167441, 175891, 200201, 209431, 221261, 230959
Offset: 1

Views

Author

Ilya Gutkovskiy, Nov 26 2015

Keywords

Comments

Primes of the form (13*k^2 - 13*k + 2)/2.

Crossrefs

Programs

  • Mathematica
    Select[Table[(13k^2-13k+2)/2,{k,200}],PrimeQ] (* Harvey P. Dale, Jun 16 2023 *)
  • PARI
    for(n=1, 1e3, if(isprime(k=(13*n^2-13*n+2)/2), print1(k,", "))) \\ Altug Alkan, Nov 26 2015

A141534 Derived from the centered polygonal numbers: start with the first triangular number, then the sum of the first square number and the second triangular number, then the sum of first pentagonal number, the second square number and the third triangular number, and so on and so on...

Original entry on oeis.org

1, 4, 11, 26, 55, 105, 184, 301, 466, 690, 985, 1364, 1841, 2431, 3150, 4015, 5044, 6256, 7671, 9310, 11195, 13349, 15796, 18561, 21670, 25150, 29029, 33336, 38101, 43355, 49130, 55459, 62376, 69916, 78115, 87010, 96639, 107041, 118256, 130325
Offset: 1

Views

Author

Dan Graybill (clopen(AT)comcast.net), Aug 12 2008

Keywords

Comments

Consider the array of triangular, square and centered polygonal numbers (irregular variant of A086272 and A086273):
1 3 6 10 15 21 28 36 45 55 A000217
1 4 9 16 25 36 49 64 81 100 A000290
1 6 16 31 51 76 106 141 181 226 A005891
1 7 19 37 61 91 127 169 217 271 A003215
1 8 22 43 71 106 148 197 253 316 A069099
1 9 25 49 81 121 169 225 289 361 A016754
1 10 28 55 91 136 190 253 325 406 A060544
1 11 31 61 101 151 211 281 361 451 A062786
1 12 34 67 111 166 232 309 397 496 A069125
1 13 37 73 121 181 253 337 433 541 A003154
1 14 40 79 131 196 274 365 469 586 A069126
1 15 43 85 141 211 295 393 505 631 A069127
etc. The sequence contains the antidiagonal sums of this array. - R. J. Mathar, Jun 05 2011
For comparison, the antidiagonal sums of A086270 are essentially A006522 starting at the 4th term. - R. J. Mathar, Sep 20 2008

Crossrefs

Cf. A000217.

Formula

a(n) = (n-1)*(n^3+11*n^2-38*n+120)/24, n>1. - R. J. Mathar, Sep 12 2008
G.f.: x*(1-x+x^2+x^3-x^5)/(1-x)^5. - Alexander R. Povolotsky, Jun 06 2011
Showing 1-7 of 7 results.