A069131 Centered 18-gonal numbers.
1, 19, 55, 109, 181, 271, 379, 505, 649, 811, 991, 1189, 1405, 1639, 1891, 2161, 2449, 2755, 3079, 3421, 3781, 4159, 4555, 4969, 5401, 5851, 6319, 6805, 7309, 7831, 8371, 8929, 9505, 10099, 10711, 11341, 11989, 12655, 13339, 14041, 14761, 15499, 16255, 17029, 17821
Offset: 1
Examples
a(5) = 181 because 9*5^2 - 9*5 + 1 = 225 - 45 + 1 = 181.
Links
- Ivan Panchenko, Table of n, a(n) for n = 1..1000
- John Elias, Illustration of Initial Terms: Triangular & Hexagonal Configurations.
- Lamine Ngom, An origin of A069131 (illustration).
- Leo Tavares, Illustration: Tri-Hexagons.
- Eric Weisstein's World of Mathematics, Centered Polygonal Numbers.
- R. Yin, J. Mu, and T. Komatsu, The p-Frobenius Number for the Triple of the Generalized Star Numbers, Preprints 2024, 2024072280. See p. 2.
- Index entries for sequences related to centered polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Programs
-
Magma
[9*n^2 - 9*n + 1 : n in [1..50]]; // Wesley Ivan Hurt, May 05 2021
-
Mathematica
FoldList[#1 + #2 &, 1, 18 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *) LinearRecurrence[{3,-3,1},{1,19,55},50] (* Harvey P. Dale, Jan 20 2014 *)
-
PARI
a(n)=9*n^2-9*n+1 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 9*n^2 - 9*n + 1.
a(n) = 18*n + a(n-1) - 18 (with a(1)=1). - Vincenzo Librandi, Aug 08 2010
G.f.: ( x*(1+16*x+x^2) ) / ( (1-x)^3 ). - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(1)=1, a(2)=19, a(3)=55. - Harvey P. Dale, Jan 20 2014
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(5)*Pi/6)/(3*sqrt(5)).
Sum_{n>=1} a(n)/n! = 10*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 10/e - 1. (End)
From Lamine Ngom, Aug 19 2021: (Start)
a(n) = 3*A003215(n) - 2.
a(n) = A247792(n) - 9*n.
a(n+1) - a(n) = 18*n = A008600(n). (End)
From Leo Tavares, Oct 31 2021: (Start)
E.g.f.: exp(x)*(1 + 9*x^2) - 1. - Nikolaos Pantelidis, Feb 06 2023
Comments