cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A069133 Centered 20-gonal (or icosagonal) numbers.

Original entry on oeis.org

1, 21, 61, 121, 201, 301, 421, 561, 721, 901, 1101, 1321, 1561, 1821, 2101, 2401, 2721, 3061, 3421, 3801, 4201, 4621, 5061, 5521, 6001, 6501, 7021, 7561, 8121, 8701, 9301, 9921, 10561, 11221, 11901, 12601, 13321, 14061, 14821, 15601, 16401, 17221, 18061, 18921, 19801
Offset: 1

Views

Author

Terrel Trotter, Jr., Apr 07 2002

Keywords

Comments

Equals binomial transform of [1, 20, 20, 0, 0, 0, ...]. - Gary W. Adamson, Jun 13 2008
Equals Narayana transform (A001263) of [1, 20, 0, 0, 0, ...]. - Gary W. Adamson, Jul 28 2011
Sequence found by reading the line from 1, in the direction 1, 21, ..., in the square spiral whose vertices are the generalized heptagonal numbers A085787. Semi-axis opposite to A033583 in the same spiral. - Omar E. Pol, Sep 16 2011

Examples

			a(5)=201 because 201 = 10*5^2 - 10*5 + 1 = 250 - 50 + 1.
		

Crossrefs

Cf. centered polygonal numbers listed in A069190.

Programs

Formula

a(n) = 10n^2 - 10n + 1.
a(n) = 20*n + a(n-1) - 20 with a(1)=1. - Vincenzo Librandi, Aug 08 2010
G.f.: x*(1 + 18*x + x^2)/(1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=21, a(2)=61. - Harvey P. Dale, Apr 29 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(3/5)*Pi/2)/(2*sqrt(15)).
Sum_{n>=1} a(n)/n! = 11*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 11/e - 1. (End)
a(n) = 12*A000217(n-1) + A016754(n-1). - John Elias, Oct 23 2020
E.g.f.: exp(x)*(1 + 10*x^2) - 1. - Nikolaos Pantelidis, Feb 06 2023