A069133 Centered 20-gonal (or icosagonal) numbers.
1, 21, 61, 121, 201, 301, 421, 561, 721, 901, 1101, 1321, 1561, 1821, 2101, 2401, 2721, 3061, 3421, 3801, 4201, 4621, 5061, 5521, 6001, 6501, 7021, 7561, 8121, 8701, 9301, 9921, 10561, 11221, 11901, 12601, 13321, 14061, 14821, 15601, 16401, 17221, 18061, 18921, 19801
Offset: 1
Examples
a(5)=201 because 201 = 10*5^2 - 10*5 + 1 = 250 - 50 + 1.
Links
- Ivan Panchenko, Table of n, a(n) for n = 1..1000
- John Elias, Illustration of initial terms.
- Eric Weisstein's World of Mathematics, Centered Polygonal Numbers.
- R. Yin, J. Mu, and T. Komatsu, The p-Frobenius Number for the Triple of the Generalized Star Numbers, Preprints 2024, 2024072280. See p. 2.
- Index entries for sequences related to centered polygonal numbers.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Cf. centered polygonal numbers listed in A069190.
Programs
-
Magma
[10*n^2 - 10*n + 1 : n in [1..60]]; // Wesley Ivan Hurt, Oct 10 2021
-
Mathematica
FoldList[#1 + #2 &, 1, 20 Range@ 45] (* Robert G. Wilson v, Feb 02 2011 *) Table[10n^2-10n+1,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{1,21,61}, 50] (* Harvey P. Dale, Apr 29 2011 *)
-
PARI
a(n)=10*n*(n-1)+1 \\ Charles R Greathouse IV, Jul 29 2011
Formula
a(n) = 10n^2 - 10n + 1.
a(n) = 20*n + a(n-1) - 20 with a(1)=1. - Vincenzo Librandi, Aug 08 2010
G.f.: x*(1 + 18*x + x^2)/(1-x)^3. - R. J. Mathar, Feb 04 2011
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3); a(0)=1, a(1)=21, a(2)=61. - Harvey P. Dale, Apr 29 2011
From Amiram Eldar, Jun 21 2020: (Start)
Sum_{n>=1} 1/a(n) = Pi*tan(sqrt(3/5)*Pi/2)/(2*sqrt(15)).
Sum_{n>=1} a(n)/n! = 11*e - 1.
Sum_{n>=1} (-1)^n * a(n)/n! = 11/e - 1. (End)
E.g.f.: exp(x)*(1 + 10*x^2) - 1. - Nikolaos Pantelidis, Feb 06 2023
Comments